During the development of Low Power Mode (LPM) (also known as L2 Mode) for DSL (Digital Subscriber Line) systems, it has become apparent that one of the most important issues is the impact on deployed legacy DSL systems. Legacy DSL systems are not capable of operating in the presence of large changes in crosstalk noise from neighbouring lines entering and exiting LPMs. For example, prior LPM methods at least do not assure that legacy lines will be protected to guarantee that no retrains will occur. These and other issues are addressed herein.
During the development of Low Power Mode (LPM) (also known as L2 Mode) for DSL (Digital Subscriber Line) systems, it has become apparent that one of the most important issues is the impact on deployed legacy DSL systems. Legacy DSL systems are not capable of operating in the presence of large changes in crosstalk noise from neighbouring lines entering and exiting LPMs. For example, prior LPM methods at least do not assure that legacy lines will be protected to guarantee that no retrains will occur. These and other issues are addressed herein.
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 47/2425 - Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
H04L 47/2441 - Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
H04L 47/32 - Flow controlCongestion control by discarding or delaying data units, e.g. packets or frames
H04L 49/552 - Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
H04L 69/324 - Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 47/2425 - Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
H04L 47/2441 - Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
H04L 47/32 - Flow controlCongestion control by discarding or delaying data units, e.g. packets or frames
H04L 45/00 - Routing or path finding of packets in data switching networks
H04L 69/324 - Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 49/552 - Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
A discrete multitone transceiver (DMT) includes a deinterleaver operable to de-interleave a plurality of bits. The DMT further includes: a forward error correction decoder operable to decode the plurality of bits, a module operable to determine, during Showtime, an impulse noise protection value, wherein the impulse protection value specifies a number corrupted DMT symbols that can be corrected by the forward error correction decoder in combination with the deinterleaver, and a receiver coupled to the deinterleaver. The receiver receives using a first interleaver parameter value, receives a flag signal, and changes to receiving using a second interleaver parameter value that is different than the first interleaver parameter value, wherein the second interleaver parameter value is used for reception on a pre-defined forward error correction codeword boundary following reception of the flag signal.
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 12/939 - Provisions for redundant switching, e.g. using parallel switching planes
With the current initialization procedures defined in the VDSL and ADSL standards, even though the xDSL system could operate in Showtime in an impulse noise environment where symbols are being corrupted, the transceivers would not be able to reach Showtime because initialization would fail due to initialization message failure. Through the use of an improved initialization procedure for communication systems, operation in environments with higher levels of impulse noise is possible.
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 47/2425 - Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
H04L 47/2441 - Traffic characterised by specific attributes, e.g. priority or QoS relying on flow classification, e.g. using integrated services [IntServ]
H04L 47/32 - Flow controlCongestion control by discarding or delaying data units, e.g. packets or frames
H04L 45/00 - Routing or path finding of packets in data switching networks
H04L 69/324 - Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the data link layer [OSI layer 2], e.g. HDLC
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 49/552 - Prevention, detection or correction of errors by ensuring the integrity of packets received through redundant connections
A discrete multitone transceiver (DMT) includes a deinterleaver operable to de-interleave a plurality of bits. The DMT further includes: a forward error correction decoder operable to decode the plurality of bits, a module operable to determine, during Showtime, an impulse noise protection value, wherein the impulse protection value specifies a number corrupted DMT symbols that can be corrected by the forward error correction decoder in combination with the deinterleaver, and a receiver coupled to the deinterleaver. The receiver receives using a first interleaver parameter value, receives a flag signal, and changes to receiving using a second interleaver parameter value that is different than the first interleaver parameter value, wherein the second interleaver parameter value is used for reception on a pre-defined forward error correction codeword boundary following reception of the flag signal.
A method and system for packet retransmission that includes transmitting or receiving, by a transceiver, a plurality of packets. Next, a determination is made for a memory allocation between a retransmission function and one or more of an interleaving and a deinterleaving function, wherein the memory allocation is based on at least one communication parameter. Then, an identification of at least one packet of the plurality of packets as a packet that should not be retransmitted is performed.
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 12/939 - Provisions for redundant switching, e.g. using parallel switching planes
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 12/939 - Provisions for redundant switching, e.g. using parallel switching planes
During the development of Low Power Mode (LPM) (also known as L2 Mode) for DSL (Digital Subscriber Line) systems, it has become apparent that one of the most important issues is the impact on deployed legacy DSL systems. Legacy DSL systems are not capable of operating in the presence of large changes in crosstalk noise from neighbouring lines entering and exiting LPMs. For example, prior LPM methods at least do not assure that legacy lines will be protected to guarantee that no retrains will occur. These and other issues are addressed herein.
A system that includes a multicarrier transceiver including a processor and memory. The system transmitting a packet using a forward error correction encoder and an interleaver, wherein the packet comprises a header field and a plurality of bytes, and wherein the header field comprises a sequence identifier (SID) and receiving at least one message using a forward error correction decoder and without using a deinterleaver, wherein the at least one message is received in a single DMT symbol and wherein the at least one message includes an acknowledgement (ACK) or a negative acknowledgement (NACK) of the transmitted packet. An SNR margin of the at least one message is greater than an SNR margin of the packet.
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 12/721 - Routing procedures, e.g. shortest path routing, source routing, link state routing or distance vector routing
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 12/939 - Provisions for redundant switching, e.g. using parallel switching planes
During the development of Low Power Mode (LPM) (also known as L2 Mode) for DSL (Digital Subscriber Line) systems, it has become apparent that one of the most important issues is the impact on deployed legacy DSL systems. Legacy DSL systems are not capable of operating in the presence of large changes in crosstalk noise from neighbouring lines entering and exiting LPMs. For example, prior LPM methods at least do not assure that legacy lines will be protected to guarantee that no retrains will occur. These and other issues are addressed herein.
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 12/939 - Provisions for redundant switching, e.g. using parallel switching planes
With the current initialization procedures defined in the VDSL and ADSL standards, even though the xDSL system could operate in Showtime in an impulse noise environment where symbols are being corrupted, the transceivers would not be able to reach Showtime because initialization would fail due to initialization message failure. Through the use of an improved initialization procedure for communication systems, operation in environments with higher levels of impulse noise is possible.
42 - Scientific, technological and industrial services, research and design
45 - Legal and security services; personal services for individuals.
Goods & Services
Product research and development, product development consulting in the field of technological solutions and intellectual property; development of new technology for others in the field of communications Licensing of intellectual property
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
H04L 12/721 - Routing procedures, e.g. shortest path routing, source routing, link state routing or distance vector routing
H04L 29/08 - Transmission control procedure, e.g. data link level control procedure
H04L 1/08 - Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H04L 12/939 - Provisions for redundant switching, e.g. using parallel switching planes
A discrete multitone transceiver (DMT) includes a deinterleaver operable to de-interleave a plurality of bits. The DMT further includes: a forward error correction decoder operable to decode the plurality of bits, a module operable to determine, during Showtime, an impulse noise protection value, wherein the impulse protection value specifies a number corrupted DMT symbols that can be corrected by the forward error correction decoder in combination with the deinterleaver, and a receiver coupled to the deinterleaver. The receiver receives using a first interleaver parameter value, receives a flag signal, and changes to receiving using a second interleaver parameter value that is different than the first interleaver parameter value, wherein the second interleaver parameter value is used for reception on a pre-defined forward error correction codeword boundary following reception of the flag signal.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H04L 5/16 - Half-duplex systemsSimplex/duplex switchingTransmission of break signals
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H03M 13/09 - Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
Evaluation of the impact of impulse noise on a communication system can be utilized to determine how the system should be configured to adapt to impulse noise events. Moreover, the system allows for information regarding impulse noise events, such as length of the event, repetition period of the event and timing of the event, to be collected and forwarded to a destination. The adaptation can be performed during one or more of Showtime and initialization, and can be initiated and determined at either one or more of a transmitter and a receiver.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H04L 5/16 - Half-duplex systemsSimplex/duplex switchingTransmission of break signals
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
By utilizing Reed-Solomon erasure decoding algorithms and techniques, the system is able to perform error detection for the case where the number of bytes received in error exceeds a correcting capability of a decoder. The error detection can be used, for example, to determine whether a codeword is decodable, and whether the retransmission of data is necessary. The retransmission can be accomplished by assembling a message that is sent to another modem requesting retransmission of one or more portions of data, such as one or more codewords.
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
H04L 1/00 - Arrangements for detecting or preventing errors in the information received
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/15 - Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
H03M 13/37 - Decoding methods or techniques, not specific to the particular type of coding provided for in groups
H04L 1/20 - Arrangements for detecting or preventing errors in the information received using signal-quality detector
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/16 - Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
H03M 13/27 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes using interleaving techniques
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
A stable Low Power Mode (LPM) for multicarrier transceivers is described that at least provides transmit power savings while enabling receiver designs that can easily operate without the detrimental effects of fluctuating crosstalk. In one exemplary embodiment, the LPM achieves power savings by reducing the number of used subcarriers without actually performing a power cutback on those subcarriers, thereby allowing a receiver to measure the SNR or noise levels and determine the crosstalk noise on the line regardless of a crosstalking modem being in a LPM or not.
Evaluation of the impact of impulse noise on a communication system can be utilized to determine how the system should be configured to adapt to impulse noise events. Moreover, the system allows for information regarding impulse noise events, such as length of the event, repetition period of the event and timing of the event, to be collected and forwarded to a destination. The adaptation can be performed during one or more of Showtime and initialization, and can be initiated and determined at either one or more of a transmitter and a receiver.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H04L 5/16 - Half-duplex systemsSimplex/duplex switchingTransmission of break signals
System and methods for a multicarrier communication system, which includes a first and second transceivers, to transmit, from the first transceiver to the second transceiver, a first initialization message indicating an impulse noise protection value. The system also transmits, from the second transceiver to the first transceiver, a second initialization message comprising information that indicates a number of repeated DMT symbols, the number of repeated DMT symbols being greater than the impulse noise protection value. The system further transmits, from the first transceiver to the second transceiver, a third initialization message, wherein the first transceiver modulates at least one message bit onto repeated DMT symbols, wherein the number of repeated DMT symbols is indicated in the second initialization message transmitted from the second transceiver to first transceiver.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
Through the identification of different packet-types, packets can be handled based on an assigned packet handling identifier. This identifier can, for example, enable forwarding of latency-sensitive packets without delay and allow error-sensitive packets to be stored for possible retransmission. In another embodiment, and optionally in conjunction with retransmission protocols including a packet handling identifier, a memory used for retransmission of packets can be shared with other transceiver functionality such as, coding, decoding, interleaving, deinterleaving, error correction, and the like.
H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
G06F 13/00 - Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
H04M 11/00 - Telephonic communication systems specially adapted for combination with other electrical systems
The ability to accurately and efficiently calculate and report communication errors is becoming more important than ever in today's communications environment. More specifically calculating and reporting CRC anomalies in a consistent manner across a plurality of communications connections in a network is crucial to accurate error reporting. Through a normalization technique applied to a CRC computation period (e.g., the PERp value), accurate error identification and reporting for each individual connection can be achieved.
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
32.
System and method for scrambling the phase of the carriers in a multicarrier communications system
A system and method that scrambles the phase characteristic of a carrier signal are described. The scrambling of the phase characteristic of each carrier signal includes associating a value with each carrier signal and computing a phase shift for each carrier signal based on the value associated with that carrier signal. The value is determined independently of any input bit value carried by that carrier signal. The phase shift computed for each carrier signal is combined with the phase characteristic of that carrier signal so as to substantially scramble the phase characteristic of the carrier signals. Bits of an input signal are modulated onto the carrier signals having the substantially scrambled phase characteristic to produce a transmission signal with a reduced PAR.
H04B 1/38 - Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
With the current initialization procedures defined in the VDSL and ADSL standards, even though the xDSL system could operate in Showtime in an impulse noise environment where symbols are being corrupted, the transceivers would not be able to reach Showtime because initialization would fail due to initialization message failure. Through the use of an improved initialization procedure for communication systems, operation in environments with higher levels of impulse noise is possible.
A transceiver is designed to share memory and processing power amongst a plurality of transmitter and/or receiver latency paths, in a communications transceiver that carries or supports multiple applications. For example, the transmitter and/or receiver latency paths of the transceiver can share an interleaver/deinterleaver memory. This allocation can be done based on the data rate, latency, BER, impulse noise protection requirements of the application, data or information being transported over each latency path, or in general any parameter associated with the communications system.
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
The ability to accurately and efficiently calculate and report communication errors is becoming more important than ever in today's communications environment. More specifically calculating and reporting CRC anomalies in a consistent manner across a plurality of communications connections in a network is crucial to accurate error reporting. Through a normalization technique applied to a CRC computation period (e.g., the PERp value), accurate error identification and reporting for each individual connection can be achieved.
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
36.
RESOURCE SHARING IN A TELECOMMUNICATIONS ENVIRONMENT
A transceiver is designed to share memory and processing power amongst a plurality of transmitter and/or receiver latency paths, in a communications transceiver that carries or supports multiple applications. For example, the transmitter and/or receiver latency paths of the transceiver can share an interleaver/deinterleaver memory. This allocation can be done based on the data rate, latency, BER, impulse noise protection requirements of the application, data or information being transported over each latency path, or in general any parameter associated with the communications system.
Evaluation of the impact of impulse noise on a communication system can be utilized to determine how the system should be configured to adapt to impulse noise events. Moreover, the system allows for information regarding impulse noise events, such as length of the event, repetition period of the event and timing of the event, to be collected and forwarded to a destination. The adaptation can be performed during one or more of Showtime and initialization, and can be initiated and determined at either one or more of a transmitter and a receiver.
A transceiver is designed to share memory and processing power amongst a plurality of transmitter and/or receiver latency paths, in a communications transceiver that carries or supports multiple applications. For example, the transmitter and/or receiver latency paths of the transceiver can share an interleaver/deinterleaver memory. This allocation can be done based on the data rate, latency, BER, impulse noise protection requirements of the application, data or information being transported over each latency path, or in general any parameter associated with the communications system.