An improved camera system includes an uncooled thermal imaging sensor, a rotary actuator, a rotary encoder, and a slip ring. The rotary actuator is physically coupled to the uncooled thermal imaging sensor and enables the sensor to rotate a full 360 degrees any number of times relative to the system's horizontal base. Through the use of the slip ring, the sensor and the sensor's wiring can rotate freely without impedance. Notably, the sensor's wiring can be disposed through a central through-hole running the length of the rotary actuator. Therefore, prior to reaching the slip ring, the sensor and its wiring rotate in unison with the rotary actuator. The encoder is structured to monitor the angular position of the sensor in order to accurately determine where the sensor is being aimed.
G03B 37/02 - Panoramic or wide-screen photographyPhotographing extended surfaces, e.g. for surveyingPhotographing internal surfaces, e.g. of pipe with scanning movement of lens or camera
H04N 5/232 - Devices for controlling television cameras, e.g. remote control
G08B 13/196 - Actuation by interference with heat, light, or radiation of shorter wavelengthActuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
An improved camera system includes an uncooled thermal imaging sensor, a rotary actuator, a rotary encoder, and a slip ring. The rotary actuator is physically coupled to the uncooled thermal imaging sensor and enables the sensor to rotate a full 360 degrees any number of times relative to the system's horizontal base. Through the use of the slip ring, the sensor and the sensor's wiring can rotate freely without impedance. Notably, the sensor's wiring can be disposed through a central through-hole running the length of the rotary actuator. Therefore, prior to reaching the slip ring, the sensor and its wiring rotate in unison with the rotary actuator. The encoder is structured to monitor the angular position of the sensor in order to accurately determine where the sensor is being aimed.
G03B 37/02 - Panoramic or wide-screen photographyPhotographing extended surfaces, e.g. for surveyingPhotographing internal surfaces, e.g. of pipe with scanning movement of lens or camera
H04N 5/232 - Devices for controlling television cameras, e.g. remote control
G08B 13/196 - Actuation by interference with heat, light, or radiation of shorter wavelengthActuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
Generating panoramic video viewable at a third-party video management system includes receiving image data captured by at least one camera. The received image data may be captured at a plurality of angles (e.g., stop positions) arranged about a single axis (e.g., about which the camera rotates). The received image data may optionally be analyzed. Based on the received image data (and any optional analysis thereof), panoramic video derived from the captured image data (e.g., still images) may then be generated. A single video stream including the generated panoramic video may then be generated. The single generated video stream may then be sent to a third-party video management system (VMS). The video stream may be usable by the video management system for displaying the generated panoramic video. Various other views or other information may also be included in the single video stream sent to the VMS.
Generating panoramic video viewable at a third-party video management system includes receiving image data captured by at least one camera. The received image data may be captured at a plurality of angles (e.g., stop positions) arranged about a single axis (e.g., about which the camera rotates). The received image data may optionally be analyzed. Based on the received image data (and any optional analysis thereof), panoramic video derived from the captured image data (e.g., still images) may then be generated. A single video stream including the generated panoramic video may then be generated. The single generated video stream may then be sent to a third-party video management system (VMS). The video stream may be usable by the video management system for displaying the generated panoramic video. Various other views or other information may also be included in the single video stream sent to the VMS.
Creating a background model for image processing to identify new foreground objects in successive video frames. A method includes providing a background image in a user interface. The method further includes receiving a first user input in the user interface that comprises an identification of one or more different regions within the background image. The method further includes receiving a second user input in the user interface that comprises a selection of an image change tolerance for each of the identified different regions. The method further includes providing the background image, information identifying the different regions, and the image change tolerances to an image processor. The background image, the information identifying the different regions, and the image change tolerances are used by the image processor to create a background model to thereby compare a successive image with the background model in order to identify foreground objects within the successive image.
G06T 7/73 - Determining position or orientation of objects or cameras using feature-based methods
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
H04N 5/232 - Devices for controlling television cameras, e.g. remote control
H04N 5/272 - Means for inserting a foreground image in a background image, i.e. inlay, outlay
G06F 3/0488 - Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
G06F 3/0484 - Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
G06T 3/40 - Scaling of whole images or parts thereof, e.g. expanding or contracting
Thermal imaging camera images are obtained from a thermal imaging camera that rotates through a plurality of stop positions. The camera captures images at a constant frame rate and at least some of the images correspond to stop positions. Thermal imaging camera images that correspond to a stop position are retained, while images that do not correspond to a stop position are discarded. Retained images are sent in a video stream to a video processor. The video stream is separated into individual thermal imaging camera images and stored for corresponding virtual camera devices that correspond to specific stop positions. In addition, the position of the camera and individual pixels of images are both correlated to geographical location data, and depth values for the pixels are determined based on the geographical data.
Creating a background model for image processing to identify new foreground objects in successive video frames. A method includes providing a background image in a user interface. The method further includes receiving a first user input in the user interface that comprises an identification of one or more different regions within the background image. The method further includes receiving a second user input in the user interface that comprises a selection of an image change tolerance for each of the identified different regions. The method further includes providing the background image, information identifying the different regions, and the image change tolerances to an image processor. The background image, the information identifying the different regions, and the image change tolerances are used by the image processor to create a background model to thereby compare a successive image with the background model in order to identify foreground objects within the successive image.
G06F 3/041 - Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
G06F 15/18 - in which a program is changed according to experience gained by the computer itself during a complete run; Learning machines (adaptive control systems G05B 13/00;artificial intelligence G06N)
G06F 17/00 - Digital computing or data processing equipment or methods, specially adapted for specific functions
G06K 9/00 - Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
G06K 9/30 - Image acquisition using automatic curve following means
G06K 9/34 - Segmentation of touching or overlapping patterns in the image field
H04N 5/262 - Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects
17.
System including a seamless lens cover and related methods
A seamless lens cover, and methods of forming such a seamless lens cover. The cap structure that covers a camera of a rotating panoramic camera system includes a seamless lens cover through which images are obtained by the camera. The cap structure may be injection molded at an initial lens cover thickness, and then a portion of the as molded initial lens cover thickness may be removed (e.g., by machining away) to achieve the final desired thickness. By such a method, the lens cover may be injection molded at thicknesses suitable for injection molding (e.g., about 0.06 to about 0.1 inch), after which most of the thickness may be machined away, to provide a seamless lens cover having a thickness of less than about 0.015 inch, exhibiting at least 60% transmittance to the thermal spectrum, no lensing characteristics, and no curvature effect.
Controlling a stepper motor. A stepper motor is driven towards an index position. An attempt is made to stop the stepper motor on the index position in a fashion that would ordinarily cause the stepper motor to ring at the index position. Characteristics of one or more subsequent pulses that would counteract the ringing are determined. The one or more determined subsequent pulses are issued to the stepper motor.
Thermal imaging camera images are obtained from a thermal imaging camera that rotates through a plurality of stop positions. The camera captures images at a constant frame rate and at least some of the images correspond to stop positions. Thermal imaging camera images that correspond to a stop position are retained, while images that do not correspond to a stop position are discarded. Retained images are sent in a video stream to a video processor. The video stream is separated into individual thermal imaging camera images and stored for corresponding virtual camera devices that correspond to specific stop positions. In addition, the position of the camera and individual pixels of images are both correlated to geographical location data, and depth values for the pixels are determined based on the geographical data.
H04N 5/232 - Devices for controlling television cameras, e.g. remote control
G03B 37/02 - Panoramic or wide-screen photographyPhotographing extended surfaces, e.g. for surveyingPhotographing internal surfaces, e.g. of pipe with scanning movement of lens or camera
G06T 3/40 - Scaling of whole images or parts thereof, e.g. expanding or contracting
G03B 11/04 - Hoods or caps for eliminating unwanted light from lenses, viewfinders, or focusing aids
H04N 3/04 - Scanning details of television systemsCombination thereof with generation of supply voltages by optical-mechanical means only having a moving aperture
H04N 5/262 - Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects
B29C 45/00 - Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mouldApparatus therefor
B29K 23/00 - Use of polyalkenes as moulding material
Detecting an extreme temperature event. A method includes collecting raw data from a high resolution sensor. The method further includes identifying in the raw collected data one or more changing data point values. The method further includes identifying, in the raw collected data that the one or more changing data point values have reached a determined threshold that indicates with a high level of probability that an extreme temperature event has occurred. Alternatively, the method may include identifying in the raw collected data a sudden extreme increase in one or more data point values that cross a threshold which indicates with a high level of probability that an extreme temperature event has occurred. As a result, the method includes issuing an alert indicating that an extreme temperature event has occurred.
Thermal imaging camera images are obtained from a thermal imaging camera that rotates through a plurality of stop positions. The camera captures images at a constant frame rate and at least some of the images correspond to stop positions. Thermal imaging camera images that correspond to a stop position are retained, while images that do not correspond to a stop position are discarded. Retained images are sent in a video stream to a video processor. The video stream is separated into individual thermal imaging camera images and stored for corresponding virtual camera devices that correspond to specific stop positions. In addition, the position of the camera and individual pixels of images are both correlated to geographical location data, and depth values for the pixels are determined based on the geographical data.
Controlling a stepper motor. A stepper motor is driven towards an index position. An attempt is made to stop the stepper motor on the index position in a fashion that would ordinarily cause the stepper motor to ring at the index position. Characteristics of one or more subsequent pulses that would counteract the ringing are determined. The one or more determined subsequent pulses are issued to the stepper motor.
Detecting an extreme temperature event. A method includes collecting raw data from a high resolution sensor. The method further includes identifying in the raw collected data one or more changing data point values. The method further includes identifying, in the raw collected data that the one or more changing data point values have reached a determined threshold that indicates with a high level of probability that an extreme temperature event has occurred. Alternatively, the method may include identifying in the raw collected data a sudden extreme increase in one or more data point values that cross a threshold which indicates with a high level of probability that an extreme temperature event has occurred. As a result, the method includes issuing an alert indicating that an extreme temperature event has occurred.
An indexing mechanism may include a drive table, an indexing table, a control ring between the tables, and a cam follower. The cam includes lobes on an inner surface. A drive arm of the cam follower is coupled to the drive table and an end of an indexing arm of the cam follower rides over the lobes during use. A spring may be coupled between the drive table and the indexing table. As the drive table rotates continuously, the components serve to move the indexing table in a non-continuous movement, by which it stops for a period and then moves to the next stop, etc. A camera may take a still image at each stop position, and the images may be stitched together (e.g., through use of an onboard computer) to produce a panoramic image. A power supply may also be provided, so that the entire system may be self-contained.
An indexing mechanism may include a drive table, an indexing table, a control ring between the tables, and a cam follower. The cam includes lobes on an inner surface. A drive arm of the cam follower is coupled to the drive table and an end of an indexing arm of the cam follower rides over the lobes during use. A spring may be coupled between the drive table and the indexing table. As the drive table rotates continuously, the components serve to move the indexing table in a non-continuous movement, by which it stops for a period and then moves to the next stop, etc. A camera may take a still image at each stop position, and the images may be stitched together (e.g., through use of an onboard computer) to produce a panoramic image. A power supply may also be provided, so that the entire system may be self-contained.
G03B 37/02 - Panoramic or wide-screen photographyPhotographing extended surfaces, e.g. for surveyingPhotographing internal surfaces, e.g. of pipe with scanning movement of lens or camera