A golf ball that includes at least one core, and a cover layer formed from a cast polyurethane or polyurea, wherein the cover layer defines a first surface area portion of a uniform first color and a second surface area portion of a uniform second color, and a seam between the first surface area portion and the second surface area portion, wherein the first color is different than the second color.
An iron-type golf club head that comprises a heel portion, a toe portion, a sole portion, a top portion, a front portion comprising a strike face and a front interior surface opposite the strike face, and a rear portion. The golf club head also comprises a discrete deflection impeding surface spaced apart from the front interior surface such that a gap, perpendicular to the strike face, is defined between the front interior surface and the discrete deflection impeding surface. The gap is between, and inclusive of, 75% and 125% of a minimum face thickness of the front portion.
A method of making a golf club head includes interposing bonding tape between a first piece and a second piece of the golf club head such that the first piece is temporarily adhered to the second piece via a tackiness of the bonding tape. The method additionally includes positioning the first piece, the second piece, and the bonding tape, interposed between the first piece and the second piece, in a vacuum bag, and reducing a pressure within the vacuum bag, relative to a pressure external to the vacuum bag, such that the vacuum bag collapses onto the first piece and the second piece and compresses the bonding tape between the first piece and the second piece. The method also includes heating the bonding tape, at least to a curing temperature of the bonding tape, when the pressure within the vacuum bag is reduced.
A golf ball comprising:
(a) a core;
(b) at least one mantle layer adjacent to the core;
(c) an inner cover layer adjacent to the mantle layer; and
(d) an outer cover layer adjacent to the inner cover layer,
wherein the inner cover layer has a material Shore D hardness that is at least 3 less than the material Shore D hardness of the outer cover layer, and the inner cover layer has a thickness of less than 0.050 in.
A golf club comprises a shaft, a club head, and a connection assembly that allows the shaft to be easily disconnected from the club head. In particular embodiments, the connection assembly includes a removable hosel sleeve that allows a shaft to be supported a desired predetermined orientation relative to the club head. In this manner, the shaft loft and/or lie angle of the club can be adjusted without resorting to traditional bending of the shaft. In another embodiment, the club head has an adjustable sole that can be adjusted upwardly and downwardly relative to the strike face of the club head, which is effective to adjust the face angle of the club head.
Golf club heads are provided for selectively increasing or optimizing the coefficient of restitution (COR) at likely impact locations on the striking face of the golf club heads, while simultaneously maintaining characteristic time (CT) below a threshold value in those likely impact locations. By analyzing historical impact locations of a large cross-section of golfers, golf club head COR values can be increased or optimized in preferential locations on the striking face, such as using weighting factors for a predefined set of locations on the striking face. Therefore, instead of increasing COR uniformly across the face and/or increasing COR at impact locations on the face where golfers are unlikely to strike the golf ball, the sweet spot of the golf club head can be increased at the impact locations where golfers typically strike the golf ball.
Disclosed herein is an iron-type golf club head that includes a body, made of a first material having a first density The body has a sole portion that includes an internal shelf. The iron-type golf club head also comprises a weight located within the internal cavity and at least partially seated on the internal shelf. The iron-type golf club head further comprises a filler material located within the internal cavity. The internal cavity has an internal cavity volume ranging between 40 cc to 55 cc.
Disclosed herein is a casting cluster for casting a body of a golf club head made of titanium or a titanium alloy. The casting cluster comprises a receptor and a plurality of runners coupled to the receptor and configured to receive molten metal from the receptor. The casting cluster also includes at least twenty-eight main gates. At least two of the main gates are coupled to each of the runners and each main gate is configured to receive molten metal from a corresponding one of the plurality of runners. The casting cluster further comprises at least twenty-eight molds. Each mold of the at least twenty-eight molds is configured to receive molten metal from a corresponding one of the main gates and to cast a body of a golf club head that has a volume of at least 100 cm3.
B22C 9/08 - Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
B22D 11/103 - Distributing the molten metal, e.g. using runners, floats, distributors
B22D 13/04 - Centrifugal castingCasting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
B22D 13/10 - Accessories for centrifugal casting apparatus, e.g. moulds, linings thereforMeans for feeding molten metal, cleansing moulds or removing castings
An iron-type golf club head is provided with a body having a volume less than 120 cc. The body can include a sole portion with two or more slots extending upwardly into the body through the sole portion into a cavity behind a face portion. A damper can be included in the cavity and in contact with a rear surface of the face portion. The club head can have a maximum CT proximate to the ideal striking location and a CT dropoff of no more than 110 μs at a point located between a first and second scoreline proximate to the sole portion. The club head can also have a CG along the y-axis (CG-y) between 0.25 mm and 20 mm and a CG along a positive z-up axis (CG-z) between 12 mm and 25 mm.
Disclosed herein is a golf club head comprising at least one crown opening and at least one crown insert attached to the body and covering the at least one crown opening. The golf club head further comprises at least one sole opening and at least one sole insert attached to the body and covering the at least one sole opening. The golf club head additionally includes at least one weight member configured to clamp first and second ledges at selected locations along a sliding weight track. The golf club head also comprise a coefficient of restitution (COR) feature located on the sole of the golf club head. The at least one crown insert is formed from a composite material having a density between 1 g/cc and 2 g/cc. The at least one sole insert is formed from a composite material having a density between 1 g/cc and 2 g/cc.
A high characteristic time golf club incorporating a shaft connection system socket extending from the bottom portion of the golf club head into the interior of the outer shell toward the top portion of the club head.
Described herein is a golf club head that includes a body with a sole portion, a crown portion, a skirt portion, a forward region, and a rearward region. The golf club head also includes a face portion including a striking face with a maximum height from the ground plane of at least about 50 mm. A volume of the golf club head is at least about 370 cm3. The golf club head has a total club head mass between 190 grams and 210 grams, and the mass of the club head located above half of the peak crown height is less than or equal to 77 grams, and the percentage of the mass above half of the peak crown height is less than or equal to 39% of the total mass of the golf club head.
A golf club head comprises a body having a face, a crown and a sole together defining an interior cavity. The body having a channel located on the sole and extending generally from a heel end of the body to a toe end of the body. A weight member movably positioned within the channel such that a position of the weight member within the channel is able to be adjusted, thereby adjusting a location of a center of gravity of the body. Additionally, adjustment of the weight member provides a maximum x-axis adjustment range of the position of the center of gravity (Max ΔCGx) that is greater than 2 mm and a maximum z-axis adjustment range of the center of gravity (Max ΔCGz) that is less than 2 mm.
A golf club head comprises a body having a face, a crown and a sole together defining an interior cavity. The body having a head-shaft connection system, a rear weight fastened to the golf club head proximate the rear end of the club head and proximate the Y-Z plane, and a front weight port or an internal cap connection system for securing the rear weight; in combination with specific windows regarding the moments of inertia and center of gravity.
Disclosed golf club heads include a body defining an interior cavity, a face, a sole, a crown, and a hosel. Certain embodiments include a weight channel positioned in the sole and defining a path along the sole. Some embodiments include a weight member positioned in the weight channel that is configured to be adjusted to any of a range of selectable positions to adjust mass properties of the golf club head. A fastener may be configured to secure the weight member in any of the selectable positions, while the fastener itself, regardless of where the weight member is positioned along the path, may be secured to the body at a fixed location that is independent of the position of the weight member along the path. Additional mass elements may be added to the weight member, such as at its ends, to further adjust mass properties of the golf club head.
Golf club heads are described having a club head portion, a shaft portion connected to the club head portion, and a grip portion connected to the shaft portion. The club head portion has a heel portion, a sole portion, a toe portion, a crown portion, a hosel portion, and a striking face. The striking face can have a center face roll contour, a toe side roll contour, a heel side roll contour, a center face bulge contour, a crown side bulge contour, and a sole side bulge contour. The toe side roll contour can be more lofted than the center face roll contour. The heel side roll contour can be less lofted than the center face roll contour. The crown side bulge contour can be more open than the center face bulge contour, and the sole side bulge contour can be more closed than the center face bulge contour.
Disclosed herein is a golf club head that comprises a strike face. The strike face has a central region, defined by a forty millimeter by twenty millimeter rectangular area centered on a center of the strike face and elongated in a heel-to-toe direction. Within the central region, the strike face has a characteristic time (CT) of no more than 257 microseconds. Within the central region, no less than 25% of the strike face has a coefficient of restitution (COR) of at least 0.8. Within the central region, no less than 60% of the strike face has a CT of at least 235 microseconds. Within the central region, no less than 35% of the strike face has a CT of at least 240 microseconds.
Described herein is a golf club head that comprises a body and a strike plate. The body comprises a heel portion, a sole portion, a toe portion, and a top portion. The strike plate comprises an outer peripheral edge and at least a portion of a strike face. Furthermore, the strike plate is welded to the body via a peripheral weld between the outer peripheral edge of the strike plate and the body. The outer peripheral edge of the strike plate comprises at least one welded portion, welded to the body via the peripheral weld, and at least one non-welded portion, not welded to the body.
A cast cup can include a forward portion of a golf club head, including a hosel, a face portion, and forward portions of a crown, sole, heel and toe. A rear ring can be formed separately from the cast cup and coupled to heel and toe portions of the cast cup to form a metallic club head body, such that the club head body defines a hollow interior region, a crown opening, and a sole opening. The cast cup and rear ring can be cast of titanium alloys. Composite crown and sole inserts can then be coupled to the crown opening and sole opening. The face portion of the cast cup can have a desirably complex geometry. The rear surface of the face portion of the cast cup can be modified before the rear ring is attached.
B22D 13/04 - Centrifugal castingCasting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
B22D 25/02 - Special casting characterised by the nature of the product by its peculiarity of shapeSpecial casting characterised by the nature of the product of works of art
A cast cup can include a forward portion of a golf club head, including a hosel, forward portions of a crown, sole, heel, and toe, and a face portion or an opening to receive a face insert. A rear ring can be formed separately from the cast cup and coupled to heel and toe portions of the cast cup to form a rigid club head body, such that the club head body defines a hollow interior region, a crown opening, a sole opening, and/or face opening. The cast cup and rear ring can be made of different materials, including various metals, composites, and polymers. Composite crown, sole, and/or face inserts can be coupled to the crown, sole, and/or face openings. Weights can be coupled to the cast cup and to the rear ring. The face can have a complex variable thickness geometry.
A golf club head comprises a body defining an interior cavity, a sole defining a bottom portion of the golf club head, a crown defining a top portion of the golf club head, a face defining a forward portion of the golf club head, a rearward portion of the golf club head opposite the face, and a hosel, the golf club head having a topline along a face-to-crown transition at the forward portion of the golf club head. The golf club head can comprise an electronic display positioned along the face-to-crown transition or wrapped from the face on to the crown. The electronic display can be sized and shaped to display an image that changes a position of the topline along the positive y-axis from a perspective of a user of the golf club head when the golf club head is in a normal address position.
Golf clubs have a primary alignment feature including a paint or masking line which delineates the transition between at least a first portion of the crown having an area of contrasting shade or color with the shade or color of the face. Some have a primary alignment feature including a paint or masking line which delineates the transition between a first portion of the crown having an area of contrasting shade or color and the area of shade or color of the face. A secondary alignment feature includes a paint or masking line that delineates the transition between the first portion of the crown having an area of contrasting shade or color with the shade or color of the face and a second portion of the crown having an area of contrasting shade or color with the shade or color of the first portion.
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
A63B 71/06 - Indicating or scoring devices for games or players
A golf club head is provided with an electronic display that is visible to a user of the golf club head when the golf club head is in the address position, such as for displaying one or more images to the user. The electronic display may include a memory, a microprocessor, and a battery, and may be configured to communicate with a user operable electronic device via a wired or a wireless communication protocol. For example, the electronic display may be configured to receive one or more images from the user operable electronic device, to store the one or more images in the memory, and to display the one or more images to the user.
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
A63B 71/06 - Indicating or scoring devices for games or players
A golf club and golf club head having a high static loft angle, low forward center of gravity, and enhanced z-axis gear effect via a large roll radius and/or tightly controlled moment of inertia about the CG x-axis, Ixx, associated with upward and downward twisting of the club head.
Aspects of the invention are directed to golf club having a crown, a sole, a face, and a primary alignment feature hard tooled into the golf club head. In some embodiments the golf club has a primary alignment feature comprising a line delineating a transition between at least a portion of the crown having an area of contrasting shade or color with a shade or color of the face. The primary alignment feature is hard tooled into the golf club head with the face of the golf club body.
Some disclosed golf club heads include body having at least one raised sole portion and a cantilevered ledge extending down around a perimeter of the club head below the level of the raised sole portion. Some disclosed golf club heads include one or more sole openings in the body and a sole insert that is mounted inside the body over the sole openings. The sole can include weight tracks as well, and a rear weight track can extend between a toe side sole opening and a heel side sole opening. A crown insert can also be included that is mounted over an upper opening in the body.
A golf club head includes a metal frame having a sole opening, a composite laminate crown joined to the frame, a composite laminate sole insert joined to the frame and overlying the sole opening, and a thermoplastic composite component overmolded on the sole insert. The composite component may include a weight track, ribs, supports or other features. A method of making the golf club includes the steps of forming a frame having a sole opening, forming a composite laminate sole insert, forming a composite laminate crown insert, injection molding a thermoplastic composite head component over the sole insert to create a sole insert unit, and joining the sole insert unit and crown insert to the frame.
Iron-type golf club heads are disclosed having a heel portion, a sole portion, a toe portion, a top-line portion, a front portion, a rear portion, and a striking face. The iron-type golf club heads include a localized stiffened region that is located on the striking face of the club head such that the localized stiffened region alters the launch conditions of golf balls struck by the club head in a way that wholly or partially compensates for, overcomes, or prevents the occurrence of a rightward deviation. In particular, the localized stiffened region is located on the striking face such that a golf ball struck under typical conditions will not impart a right-tending sidespin to the golf ball.
Described herein is a golf club head that comprises a body and a strike plate. The body comprises a heel portion, a sole portion, a toe portion, and a top portion. The strike plate comprises an outer peripheral edge and at least a portion of a strike face. Furthermore, the strike plate is welded to the body via a peripheral weld between the outer peripheral edge of the strike plate and the body. The outer peripheral edge of the strike plate comprises at least one welded portion, welded to the body via the peripheral weld, and at least one non-welded portion, not welded to the body.
Described are embodiments of golf club heads having an internal cavity and features that cause the golf club head to have an improved acoustic performance when striking a golf ball. Some embodiments include one or more weight tracks and/or weight ports formed in the sole for receiving adjustable weights. The golf club heads can include one or more internal ribs, thickened wall regions, and/or posts positioned within the cavity that increase the rigidity of the club head and improve the acoustic performance of the club head when striking a ball.
Some disclosed golf club heads include body having at least one raised sole portion and a cantilevered ledge extending down around a perimeter of the club head below the level of the raised sole portion. Some disclosed golf club heads include one or more sole openings in the body and a sole insert that is mounted inside the body over the sole openings. The sole can include weight tracks as well, and a rear weight track can extend between a toe side sole opening and a heel side sole opening. A crown insert can also be included that is mounted over an upper opening in the body.
A golf club head is provided having a club body having a front portion, a rear portion, a toe portion, and a heel portion. The club head also having a central portion connected with the front portion. A frame is connected with the central portion configured to provide a lightweight crown portion being located above an offset plane.
A golf club head includes a head body having a crown, sole and skirt therebetween, the head body defining an opening in a front portion and having a frame support around the periphery of the opening. A face plate is mounted within the opening and has a transition radius along one or more edges to at least partially wrap around one or more of the crown, sole and skirt. The head includes thin wall zones in the crown and skirt, a hosel flush with the crown and a weight mounted in the sole proximate to the face plate, such that the golf club head has a center of gravity located relatively low and forward in proximity to the face plate.
Golf clubs, golf club grips, golf balls, golf gloves, golf tees, golf club heads, golf club head covers, golf ball markers, golf bags and golf club shafts.
A golf ball having contact time, CT143 of greater than or equal to about 400 microsecs, a Coefficient of Restitution, COR143 of greater than or equal to about 0.720, a TD5, TD6, or TD7 of from about 310 to about 320 yards when measured under each respective Test Condition, and a TD2 vs. Headspeed ratio of greater than about 2.3 when measured under Test Condition 2.
Disclosed herein is an iron-type golf club head. The iron-type golf club head comprises a body, having a density of less than 8 grams-per-cubic-centimeter (g/cc). The body comprises a heel portion, a toe portion, a sole portion, a top portion, and a front portion. The body also comprises a rear portion, comprising an insert shelf, adjacent the sole portion and extending from the toe portion to the heel portion, and a retention bar, integrally formed with a portion of the insert shelf and circumferentially closing the portion of the insert shelf to define a first insert channel. The iron-type golf club head also comprises a high-density insert, having a density of greater than 7.5 g/cc, supported by the insert shelf, and retained within the first insert channel by the retention bar.
Disclosed herein is a golf club head that includes a forward portion, including a strike face, a crown portion, a rear portion, an interior cavity, and a trihedral corner reflector permanently embedded in, integrally formed in, or attached to at least one of the crown portion or the rear portion.
Disclosed herein is a driver-type golf club head that is made from at least one first material, having a density between 0.9 g/cc and 3.5 g/cc, at least one second material, having a density between 3.6 g/cc and 5.5 g/cc, and at least one third material, having a density between 5.6 g/cc and 20.0 g/cc. The first material has a first mass no more than 55% and no less than 25% of the total mass of the golf club head. The second material has a second mass no more than 65% and no less than 20% of the total mass of the golf club head. The third material has a third mass equal to the total mass of the golf club head less the first mass of the first material and the second mass of the second material.
A golf club head having discreet regions of specific mass relationships, including a lightweight forward portion, to achieve specific mass properties and performance.
A golf club includes a golf club head, a shaft coupled to the golf club head, a grip attached to the shaft, and an actuator configured to generate a sound. The golf club also includes an impact sensor configured to detect an impact of the golf club head with a golf ball, and an electronic controller configured to command the actuator to generate the sound in response to the impact sensor detecting the impact of the golf club head with the golf ball.
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
A63B 60/00 - Details or accessories of golf clubs, bats, rackets or the like
A63B 60/46 - Measurement devices associated with golf clubs, bats, rackets or the like for measuring physical parameters relating to sporting activity, e.g. baseball bats with impact indicators or bracelets for measuring the golf swing
A63B 71/06 - Indicating or scoring devices for games or players
Golf club fitting systems can include a golf club head along with multiple alternative adjustment sleeves that each mate with the club head to modify loft and lie angles. Each adjustment sleeve can include a first portion having a respective longitudinal axis and configured to mate and coaxially align with a hosel of the golf club head, and a second portion having a respective longitudinal axis angularly offset from the longitudinal axis of the first portion and configured to mate and coaxially align with a golf club shaft. Each different adjustment sleeve can be configured to alter a position of the golf club head relative to a golf club shaft by a different adjustment value relative to each other. Fitting systems can also include a shaft sleeve that can join any of various different shafts with any of the adjustment sleeves. Fitting systems can also include additional club heads.
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
A63B 53/02 - Joint structures between the head and the shaft
A multi-material iron-type golf club head having a shell that defines a closed internal volume, where the head is composed of at least two different materials and achieves a high maximum characteristic time.
A golf club head having discreet regions of specific mass relationships, including a lightweight forward portion, to achieve specific mass properties and performance.
A golf ball including an outer surface having dimples located on the outer surface, at least one core, at least one mantle layer, at least one cover layer, and a plurality of images located on the outer surface, the images being provided with at least two contrasting colors, wherein the plurality of images each have a Major Peak Ratio of between 0.18 and 1, a Major Valley Ratio of between 0.18 and 1, a slope value of between −5 and 5, and an intercept value between 5 and 80.
An iron-type golf club having selectively machined portions and attributes, including a machined sole portion and/or a machined leading edge portion. The machined portion(s) include continuous machining scallop lines having a scallop height and a step-over distance.
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
A63B 71/06 - Indicating or scoring devices for games or players
In one embodiment the golf club head includes three main components, a frame component, a rear cap component, and a striking plate.
In one embodiment the golf club head includes three main components, a frame component, a rear cap component, and a striking plate.
In another embodiment the club head may also comprise a front component, which is manufactured as a single unitary piece, and a rear cap component. The front component may also be overmolded by a thermoplastic polymeric outer portion which may or may not cover the striking face and which provides additional reinforcement at the load bearing sections of the club head and allows a more facile connection to the rear cap component.
In one embodiment the golf club head includes three main components, a frame component, a rear cap component, and a striking plate.
In another embodiment the club head may also comprise a front component, which is manufactured as a single unitary piece, and a rear cap component. The front component may also be overmolded by a thermoplastic polymeric outer portion which may or may not cover the striking face and which provides additional reinforcement at the load bearing sections of the club head and allows a more facile connection to the rear cap component.
In another embodiment, a club head having a main body, crown insert, sole insert and metal face plate frame is formed by forming the sole insert and crown insert from a polymeric material using a thermoforming or thermosetting process and then injection molding the main body over the sole insert, crown insert and metal face plate frame.
The present embodiments provide systems and methods for aggregating measurements captured by different technologies during a golf swing. By capturing measurements using different technologies, more accurate measurements may be provided to a user by selecting from the measurements, offsetting measurements based on the technologies used, and aligning measurements between devices. Further, by aggregating measurements received from different devices, additional features and functionality may be provided to the user that is absent from any one device used alone. Additionally, by storing the aggregated measurements, users, club fitters and instructors may access and leverage larger databases of measurements to better understand the user's golf swing and to provide better recommendations and instruction to the user.
Disclosed herein is a casting cluster for casting a body of a golf club head made of titanium or a titanium alloy. The casting cluster comprises a receptor and a plurality of runners coupled to the receptor and configured to receive molten metal from the receptor. The casting cluster also includes at least twenty-eight main gates. At least two of the main gates are coupled to each of the runners and each main gate is configured to receive molten metal from a corresponding one of the plurality of runners. The casting cluster further comprises at least twenty-eight molds. Each mold of the at least twenty-eight molds is configured to receive molten metal from a corresponding one of the main gates and to cast a body of a golf club head that has a volume of at least 100 cm3.
B22C 9/08 - Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
B22D 11/103 - Distributing the molten metal, e.g. using runners, floats, distributors
B22D 13/04 - Centrifugal castingCasting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
B22D 13/10 - Accessories for centrifugal casting apparatus, e.g. moulds, linings thereforMeans for feeding molten metal, cleansing moulds or removing castings
Described herein is a golf club head that comprises a body and a strike plate. The body comprises a heel portion, a sole portion, a toe portion, and a top portion. The strike plate comprises an outer peripheral edge and at least a portion of a strike face. Furthermore, the strike plate is welded to the body via a peripheral weld between the outer peripheral edge of the strike plate and the body. The outer peripheral edge of the strike plate comprises at least one welded portion, welded to the body via the peripheral weld, and at least one non-welded portion, not welded to the body.
Disclosed herein are various embodiments of a golf club head having improved mass distribution characteristics. The golf club head includes a body and a face positioned at a forward portion of the body. The golf club head also includes one or more mass elements positioned at predetermined locations about the head. The mass elements assist in achieving a desired relationship between the moment of inertia about a center of gravity x-axis and the moment of inertia about a center of gravity z-axis.
Single pass printing methods designed to reduce or prevent unwanted image distortion and/or image defects when printing on a ball. In some embodiments, the methods can comprise printing ink droplets based on a distorted pixel map comprising a plurality of pixel areas distorted in at least one of a width direction and a height direction, wherein select pixel areas are removed from the distorted pixel map. In some embodiments, a distorted pixel map can comprise a plurality of undistorted pixel areas and a plurality of pixel areas distorted in at least one of a width direction and a height direction.
B41M 5/00 - Duplicating or marking methodsSheet materials for use therein
B41J 3/407 - Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
B41M 3/00 - Printing processes to produce particular kinds of printed work, e.g. patterns
G06K 15/02 - Arrangements for producing a permanent visual presentation of the output data using printers
A golf club comprises a shaft, a club head, and a connection assembly that allows the shaft to be easily disconnected from the club head. In particular embodiments, the connection assembly includes a removable hosel sleeve that allows a shaft to be supported a desired predetermined orientation relative to the club head. In this manner, the shaft loft and/or lie angle of the club can be adjusted without resorting to traditional bending of the shaft. In another embodiment, the club head has an adjustable sole that can be adjusted upwardly and downwardly relative to the strike face of the club head, which is effective to adjust the face angle of the club head.
A cast cup can include a forward portion of a golf club head, including a hosel, a face portion, and forward portions of a crown, sole, heel and toe. A rear ring can be formed separately from the cast cup and coupled to heel and toe portions of the cast cup to form a metallic club head body, such that the club head body defines a hollow interior region, a crown opening, and a sole opening. The cast cup and rear ring can be cast of titanium alloys. Composite crown and sole inserts can then be coupled to the crown opening and sole opening. The face portion of the cast cup can have a desirably complex geometry. The rear surface of the face portion of the cast cup can be modified before the rear ring is attached.
B22D 13/04 - Centrifugal castingCasting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry
B22D 25/02 - Special casting characterised by the nature of the product by its peculiarity of shapeSpecial casting characterised by the nature of the product of works of art
A putter head includes a body portion, an electronic display coupled to the body portion, and a controller coupled to the body portion and in electrical communication with the electronic display. The controller is configured to control the electronic display to display one or more images on the electronic display.
An iron-type golf club has a body that defines a rear void. The face portion includes an ideal striking location that defines the origin of a coordinate system. The body includes a central region in which −25 mm
A golf club head includes a club body including a crown, a sole, a skirt disposed between and connecting the crown and the sole and a face portion connected to a front end of the club body. The face portion includes a geometric center defining the origin of a coordinate system when the golf club head is ideally positioned, the coordinate system including an x-axis being tangent to the face portion at the origin and parallel to a ground plane, a y-axis intersecting the origin being parallel to the ground plane and orthogonal to the x-axis, and a z-axis intersecting the origin being orthogonal to both the x-axis and the y-axis. The golf club head defines a center of gravity CG, the CG being a distance CGY from the origin as measured along the y-axis and a distance CGZ from the origin as measured along the z-axis.
A cast cup can include a forward portion of a golf club head, including a hosel, forward portions of a crown, sole, heel, and toe, and a face portion or an opening to receive a face insert. A rear ring can be formed separately from the cast cup and coupled to heel and toe portions of the cast cup to form a rigid club head body, such that the club head body defines a hollow interior region, a crown opening, a sole opening, and/or face opening. The cast cup and rear ring can be made of different materials, including various metals, composites, and polymers. Composite crown, sole, and/or face inserts can be coupled to the crown, sole, and/or face openings. Weights can be coupled to the cast cup and to the rear ring. The face can have a complex variable thickness geometry.
Disclosed herein is an iron-type golf club head that includes a body, made of a first material having a first density The body has a sole portion that includes an internal shelf. The iron-type golf club head also comprises a weight located within the internal cavity and at least partially seated on the internal shelf. The iron-type golf club head further comprises a filler material located within the internal cavity. The internal cavity has an internal cavity volume ranging between 40 cc to 55 cc.
Golf club heads include white diffusing top surfaces to aid in club head alignment. Wood type club heads also include a dark diffusing club face so that a crown/face border is emphasized. Scorelines in wood type clubs can be provided with an intermediate contrast surface, and can be displaced from club face center to accommodate player perception when confronted with a white diffusing crown. Putter heads can include dark diffusing alignment lines, and iron-type club heads can include white diffusing surfaces at a sole portion of a club face, at a top line, or a top portion of a club face.
A golf club head comprises a sole, a recessed sole port in the sole; and a rotatably adjustable sole piece adapted to be at least partially received within the sole port and comprising a central body having a plurality of contact surfaces adapted to contact the sole port and being offset from each other along a central axis extending through the central body of the sole piece. The sole piece can be positioned at least partially within the sole port at five or more rotational and axial positions with respect to the central axis, wherein at each rotational position, at least one of said contact surfaces of the central body contacts the sole port to set the axial position of the sole piece. The sole port and/or the sole piece can be generally pentagonal in shape.
Disclosed here is a method of making a golf club head. The method comprises steps of laser ablating a second-part surface of a second part of the golf club head such that a second-part ablated surface is formed in the second part, and bonding together a first-part surface, of a first part of the golf club head, and the second-part ablated surface of the second part of the golf club head.
A golf club head includes a body defining an interior cavity. The body includes a sole positioned at a bottom portion of the golf club head, a crown positioned at a top portion, and a skirt positioned around a periphery between the sole and crown. The body has a forward portion and a rearward portion. The club head includes a face positioned at the forward portion of the body. In some embodiments, the crown includes a lattice-like structure having thin regions surrounded by a web of relatively thicker regions. In some embodiments, the club head includes one or more stiffening tubes attached between the sole and the crown to improve the acoustic performance of the golf club head.
Disclosed herein is a driver-type golf club head that is made from at least one first material, having a density between 0.9 g/cc and 3.5 g/cc, at least one second material, having a density between 3.6 g/cc and 5.5 g/cc, and at least one third material, having a density between 5.6 g/cc and 20.0 g/cc. The first material has a first mass no more than 55% and no less than 25% of the total mass of the golf club head. The second material has a second mass no more than 65% and no less than 20% of the total mass of the golf club head. The third material has a third mass equal to the total mass of the golf club head less the first mass of the first material and the second mass of the second material.
Golf club heads are provided for selectively increasing or optimizing the coefficient of restitution (COR) at likely impact locations on the striking face of the golf club heads, while simultaneously maintaining characteristic time (CT) below a threshold value in those likely impact locations. By analyzing historical impact locations of a large cross-section of golfers, golf club head COR values can be increased or optimized in preferential locations on the striking face, such as using weighting factors for a predefined set of locations on the striking face. Therefore, instead of increasing COR uniformly across the face and/or increasing COR at impact locations on the face where golfers are unlikely to strike the golf ball, the sweet spot of the golf club head can be increased at the impact locations where golfers typically strike the golf ball.
Some disclosed golf club heads include body having at least one raised sole portion and a cantilevered ledge extending down around a perimeter of the club head below the level of the raised sole portion. Some disclosed golf club heads include one or more sole openings in the body and a sole insert that is mounted inside the body over the sole openings. The sole can include weight tracks as well, and a rear weight track can extend between a toe side sole opening and a heel side sole opening. A crown insert can also be included that is mounted over an upper opening in the body.
An iron-type golf club head is disclosed having a heel portion, a sole portion, a toe portion, a top-line portion, a front portion, a rear portion, and a striking face. A back wall is also disclosed in the rear portion enclosing a portion of the rear portion to create an enclosed cavity. The cavity is defined by at least a rear surface of the striking face, an inner back wall surface, and the sole portion. A plug and a filler material is located within the enclosed cavity. The filler material surrounds the plug and is configured to hold the plug in place. The plug is lighter than the filler material.
A63B 53/08 - Golf clubs with special arrangements for obtaining a variable impact
A63B 60/00 - Details or accessories of golf clubs, bats, rackets or the like
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
B23P 17/04 - Metal-working operations, not covered by a single other subclass or another group in this subclass characterised by the nature of the material involved or the kind of product independently of its shape
An iron-type golf club head is disclosed having a heel portion, a sole portion, a toe portion, a top-line portion, a front portion, a rear portion, and a striking face. A back wall is also disclosed in the rear portion enclosing a portion of the rear portion to create an enclosed cavity. The cavity is defined by at least a rear surface of the striking face, an inner back wall surface, and the sole portion. A plug and a filler material is located within the enclosed cavity. The filler material surrounds the plug and is configured to hold the plug in place. The plug is lighter than the filler material.
A63B 53/08 - Golf clubs with special arrangements for obtaining a variable impact
A63B 60/00 - Details or accessories of golf clubs, bats, rackets or the like
A63B 60/42 - Devices for measuring, verifying, correcting or customising the inherent characteristics of golf clubs, bats, rackets or the like, e.g. measuring the maximum torque a batting shaft can withstand
B23P 17/04 - Metal-working operations, not covered by a single other subclass or another group in this subclass characterised by the nature of the material involved or the kind of product independently of its shape
Disclosed herein is a driver-type golf club head that has a strike face. The strike face has a central region, defined by a 40 mm by 20 mm rectangular area centered on a geometric center of the strike face and elongated in a heel-to-toe direction. The driver-type golf club head is configured such that after 500 impacts of a standard golf ball at the geometric center of the strike face, where at each impact the standard golf ball has a velocity of 52 meters per second, the CT of the strike face at any point within the central region is less than 256 microseconds and the CT at the geometric center of the strike face is no more than five microseconds different than the initial CT value.
A golf club head comprises a body having a face, a crown and a sole together defining an interior cavity. The body having a head-shaft connection system, a rear weight fastened to the golf club head proximate the rear end of the club head and proximate the Y-Z plane, and a front weight port or an internal cap connection system for securing the rear weight; in combination with specific windows regarding the moments of inertia and center of gravity.
An aerodynamic golf club head producing reduced aerodynamic drag forces. The club head has crown section attributes and material attributes that impart beneficial aerodynamic properties and performance.
A golf club head is described having a body defining an interior cavity and comprising a heel portion, a toe portion, and a sole portion positioned at a bottom portion of the golf club head, and a crown positioned at a top portion. The body has a forward portion and a rearward portion. The club head can have a non-metallic striking surface positioned at the forward portion of the body.
A putter-type golf club head comprises a unitary construction metallic frame having a thin wall crown region, and a crown damping member attached to thin wall crown region. The unitary construction metallic frame has a frame mass of 250-370 grams, a frame density of at least 2.5 g/cc, a frame length of 40-130 mm, a frame width of 75-130 mm, a frame height of 17-30 mm, a frame front forming a portion of a striking face, a frame rear, a frame top, and a frame bottom, wherein the frame top includes a thin wall crown region having a TWCR thickness of 0.6-1.2 mm, a TWCR length, a TWCR width, and a TWCR area of at least 600 mm2.
Disclosed herein are various embodiments of a golf club head having improved mass distribution characteristics. The golf club head includes a body and a face positioned at a forward portion of the body. The golf club head also includes one or more mass elements positioned at predetermined locations about the head. The mass elements assist in achieving a desired relationship between the moment of inertia about a center of gravity x-axis and the moment of inertia about a center of gravity z-axis.