Technology to convert syngas into aviation fuel is described. Some variations provide a process comprising: providing a starting syngas stream comprising H2 and CO; purifying the syngas feed stream, if necessary; feeding the clean syngas stream to an alcohol-synthesis reactor, to catalytically convert syngas to a C1-C10 mixed-alcohol stream; feeding the C1-C10 mixed-alcohol stream to a dehydration reactor, to catalytically convert C1-C10 mixed alcohols to C2-C10 mixed olefins; feeding the mixed olefins to an oligomerization reactor, to catalytically convert the C2-C10 mixed olefins to C5-C16 mixed hydrocarbons; feeding the C5-C16 mixed hydrocarbons and hydrogen to a hydrogenation reactor, to catalytically hydrogenate C═C double bonds within the C5-C16 mixed hydrocarbons, thereby generating stabilized C5-C16 mixed hydrocarbons; and recovering the stabilized C5-C16 mixed hydrocarbons as aviation fuel. In preferred embodiments, the aviation fuel is sustainable aviation fuel (SAF) under ASTM D7566-24a.
211011011021021051651651651651616 mixed hydrocarbons as aviation fuel. In preferred embodiments, the aviation fuel is sustainable aviation fuel (SAF) under ASTM D7566-24a.
C10G 2/00 - Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
C10G 69/14 - Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural parallel stages only
Some variations provide a process for producing mixed alcohols, comprising: purifying a biogas feedstock to generate a renewable natural gas stream comprising methane; introducing the renewable natural gas stream into a methane-to-syngas unit operated at effective conditions to convert the methane to a first syngas stream containing at least H2, CO, and CO2; purifying the first syngas stream, including separating the CO2 from the first syngas stream, and optionally separating some of the H2 from the first syngas stream, thereby generating a clean syngas stream; introducing the clean syngas stream into a mixed-alcohol reactor operated at effective alcohol synthesis conditions with an alcohol-synthesis catalyst, thereby generating mixed alcohols; and purifying the mixed alcohols to generate a mixed-alcohol product. The mixed-alcohol product may be blended with a hydrocarbon fuel, such as gasoline, to produce a blended fuel. The blended fuel has significantly lower carbon intensity than the base hydrocarbon fuel.
C07C 29/151 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
C01B 3/52 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquidsRegeneration of used liquids
C07C 29/153 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
C07C 29/48 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
C07C 29/74 - SeparationPurificationStabilisationUse of additives
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
5.
Tail gas utilization for mixed alcohols production
C07C 29/00 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
B01D 53/00 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
2 from the first syngas stream, thereby generating a clean syngas stream; introducing the clean syngas stream into a mixed-alcohol reactor operated at effective alcohol synthesis conditions with an alcohol-synthesis catalyst, thereby generating mixed alcohols; and purifying the mixed alcohols to generate a mixed-alcohol product. The mixed-alcohol product may be blended with a hydrocarbon fuel, such as gasoline, to produce a blended fuel. The blended fuel has significantly lower carbon intensity than the base hydrocarbon fuel.
C07C 29/151 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
C01B 3/52 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquidsRegeneration of used liquids
C07C 29/153 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
C07C 29/48 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
C07C 29/74 - SeparationPurificationStabilisationUse of additives
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
2 from the first syngas stream, thereby generating a clean syngas stream; introducing the clean syngas stream into a mixed-alcohol reactor operated at effective alcohol synthesis conditions with an alcohol-synthesis catalyst, thereby generating mixed alcohols; and purifying the mixed alcohols to generate a mixed-alcohol product. The mixed-alcohol product may be blended with a hydrocarbon fuel, such as gasoline, to produce a blended fuel. The blended fuel has significantly lower carbon intensity than the base hydrocarbon fuel.
C07C 29/151 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
C07C 29/48 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
C01B 3/34 - Production of hydrogen or of gaseous mixtures containing hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
C01B 3/52 - Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquidsRegeneration of used liquids
C07C 29/74 - SeparationPurificationStabilisationUse of additives
C10L 1/04 - Liquid carbonaceous fuels essentially based on blends of hydrocarbons
C07C 29/153 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
22222 from the first syngas stream, thereby generating a clean syngas stream; introducing the clean syngas stream into a mixed-alcohol reactor operated at effective alcohol synthesis conditions with an alcohol-synthesis catalyst, thereby generating mixed alcohols; and purifying the mixed alcohols to generate a mixed-alcohol product. The mixed-alcohol product may be blended with a hydrocarbon fuel, such as gasoline, to produce a blended fuel. The blended fuel has significantly lower carbon intensity than the base hydrocarbon fuel.
C07C 29/151 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
C01B 3/22 - Production of hydrogen or of gaseous mixtures containing hydrogen by decomposition of gaseous or liquid organic compounds
C07C 27/00 - Processes involving the simultaneous production of more than one class of oxygen-containing compounds
C10K 3/00 - Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
C10L 3/06 - Natural gasSynthetic natural gas obtained by processes not covered by , or
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
B01D 53/00 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols
Higher mixed alcohols are produced from syngas contacting a catalyst in a reactor. The catalyst has a first component of molybdenum or tungsten, a second component of vanadium, a third component of iron, cobalt, nickel or palladium and optionally a fourth component of a promoter. The first component forms alcohols, while the vanadium and the third component stimulates carbon chain growth to produce higher alcohols.
C07C 29/156 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals, or compounds thereof
Higher mixed alcohols are produced from syngas contacting a catalyst in a reactor. The catalyst has a first component of molybdenum or tungsten, a second component of vanadium, a third component of iron, cobalt, nickel or palladium and optionally a fourth component of a promoter. The first component forms alcohols, while the vanadium and the third component stimulates carbon chain growth to produce higher alcohols.
C07C 29/156 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals, or compounds thereof
C07C 29/157 - Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals, or compounds thereof containing platinum group metals or compounds thereof
Higher mixed alcohols are produced from, syngas contacting a catalyst in a reactor. The catalyst has a first component of molybdenum or tungsten, a second component of vanadium, a third component of iron, cobalt, nickel or palladium and optionally a fourth component of a promoter. The first component forms alcohols, while the vanadium and the third component stimulates carbon chain growth to produce higher alcohols.
Mixed alcohols are produced from syngas. The syngas (100) is provided to a catalyst (84) in a reactor (80) at selected temperatures and pressures. Reactive products, including mixed alcohols, are removed from the reactor. Non-reactive components (255,270) are removed from the mixed alcohols of their reaction products. At least part of the non- reactive components are reintroduced in the reactor along with syngas. The non-reactive components are a solvent or a super critical fluid. The non-reactive components can be reintroduced into the reactor with reactive components such as methanol or C02.