Described herein are hydrophobically-modified polysaccharides, their manufacture, and their use in microencapsulation, typically of water-insoluble active materials.
A method includes providing a movable module to a worksite, the movable module including a pump, a variable frequency drive coupled to the pump, a programmable logic controller operatively coupled to the variable frequency drive, and a first flow meter coupled to an outlet of the pump. The method also includes coupling a tank to a suction end of the pump, the tank having a concentrated chemical disposed therein, and coupling an outlet of the pump to a blender fluid flowline. The method also includes providing a low dosage of the concentrated chemical of between 0.01 and 0.15 gallons per thousand gallons to a clean fluid in the blender fluid flowline by pumping the concentrated chemical with the pump from the tank to the blender fluid flowline and adjusting an amount of the concentrated chemical pumped in response to data input into the programmable logic controller.
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21B 43/267 - Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
E21B 47/008 - Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelinesProtecting measuring instruments in boreholes against heat, shock, pressure or the like
3.
Agricultural adjuvant compositions, pesticide compositions, and methods for using such compositions
Pesticide compositions containing an adjuvant which contains, based on 100 parts by weight of the adjuvant, (a) greater than about 50 parts by weight of at least one alkyl fatty acid ester, (b) from about 2 parts by weight to less than about 5 parts by weight of a surfactant comprising: (b)(i) one or more anionic surfactants selected from sulfonic acids, sulfonic acid esters, alkylsulfosuccinic acid esters, phosphate esters, sulfate esters, and oleoyltaurate salts, or (b)(ii) one or more non-ionic surfactants selected from sorbitan fatty acid esters, aryl alkoxylates, alkoxylated fatty alcohols, alkoxylated fatty acids, alkoxylated triglycerides, alkoxy copolymers, alkylpolyglucosides, alkoxylated fatty amines, and ether amines, or (iii) a mixture (b)(i) and (b)(ii), exhibit improved performance, particularly when sprayed through a flat fan spray nozzle, an air induction spray nozzle, or other spray nozzle and at a pressure of from about 10 pounds per square inch to about 100 pounds per square inch.
A01G 22/00 - Cultivation of specific crops or plants not otherwise provided for
A01N 57/20 - Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
4.
POLYMER DISPERSIONS FOR OILFIELD FRICTION REDUCTION
The present invention relates to a polymer dispersion prepared by controlled radical polymerization. The present invention also relates to methods for using the polymer dispersion for oilfield friction reduction under a variety of adverse conditions.
Described herein are hydrophobically-modified polysaccharides, their manufacture, and their use in microencapsulation, typically of water- insoluble active materials.
The present disclosure relates to a method for reducing or preventing colloids adhesion and/or fouling on a substrate in need thereof by forming a coating having a first layer that includes a polyphenol compound, and a second layer that includes a hydrophilic polymer having repeating units derived from one or more zwitterionic monomers, typically one or more betaine monomers, on the substrate. The present disclosure also relates to the coating made thereby and an article having the said coating.
The present disclosure relates to the use of a composition for reducing or preventing colloids adhesion and/or fouling on a substrate, the composition comprising a copolymer having repeating units derived from one or more zwitterionic monomers and repeating units derived from one or more phosphorous acid monomers.
Pesticide compositions containing an adjuvant which contains, based on 100 parts by weight of the adjuvant, (a) greater than about 50 parts by weight of at least one alkyl fatty acid ester, (b) from about 2 parts by weight to less than about 5 parts by weight of a surfactant comprising: (b)(i) one or more anionic surfactants selected from sulfonic acids, sulfonic acid esters, alkylsulfosuccinic acid esters, phosphate esters, sulfate esters, and oleoyltaurate salts, or (b)(ii) one or more non-ionic surfactants selected from sorbitan fatty acid esters, aryl alkoxylates, alkoxylated fatty alcohols, alkoxylated fatty acids, alkoxylated triglycerides, alkoxy copolymers, alkylpolyglucosides, alkoxylated fatty amines, and ether amines, or (iii) a mixture (b)(i) and (b)(ii), exhibit improved performance, particularly when sprayed through a flat fan spray nozzle, an air induction spray nozzle, or other spray nozzle and at a pressure of from about 10 pounds per square inch to about 100 pounds per square inch.
A01N 25/30 - Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of applicationSubstances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
A01N 57/20 - Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
9.
Agricultural adjuvant compositions, pesticide compositions, and methods for using such compositions
Pesticide compositions containing an adjuvant which contains, based on 100 parts by weight of the adjuvant, (a) greater than about 50 parts by weight of at least one alkyl fatty acid ester, (b) from about 2 parts by weight to less than about 5 parts by weight of a surfactant comprising: (b)(i) one or more anionic surfactants selected from sulfonic acids, sulfonic acid esters, alkylsulfosuccinic acid esters, phosphate esters, sulfate esters, and oleoyltaurate salts, or (b)(ii) one or more non-ionic surfactants selected from sorbitan fatty acid esters, aryl alkoxylates, alkoxylated fatty alcohols, alkoxylated fatty acids, alkoxylated triglycerides, alkoxy copolymers, alkylpolyglucosides, alkoxylated fatty amines, and ether amines, or (iii) a mixture (b)(i) and (b)(ii), exhibit improved performance, particularly when sprayed through a flat fan spray nozzle, an air induction spray nozzle, or other spray nozzle and at a pressure of from about 10 pounds per square inch to about 100 pounds per square inch.
A01N 25/30 - Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of applicationSubstances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
A01N 57/20 - Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
A method for achieving thickening time in a cement composition comprising providing a cementitious composition comprising a cement mix and a thickening time modifier selected from the group consisting of calcium sulfate hemihydrate, calcium sulfate dihydrate, anhydrous calcium sulfate, and combinations thereof; combining the cementitious composition with water in an amount from about 140 wt% to about 300 wt% by weight of cement to form a slurry; and allowing the slurry to achieve at least 70 Bearden units of consistency (Be).
C09K 8/467 - Compositions for cementing, e.g. for cementing casings into boreholesCompositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
C04B 28/16 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
The present invention relates to spirobifluorene derivatives and their use in the electron injection layers of organic electronic devices, such as, for example, organic light-emitting devices.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
12.
SPIROBIFLUORENE DERIVATIVES AND THEIR USE IN ELECTRON TRANSPORT LAYERS OF ORGANIC ELECTRONIC DEVICES
The present invention relates to spirobifluorene derivatives and their use in the electron transport layers of organic electronic devices, such as, for example, organic light-emitting devices.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
13.
SPIROBIFLUORENE DERIVATIVES HAVING NITROGEN-CONTAINING HETEROARYL RINGS AND THEIR USE IN ORGANIC ELECTRONICS
The present disclosure relates to emissive films comprising at least one emitter compound having a LUMO energy of at least 1.8 eV and spirobifluorene derivatives having nitrogen-containing heteroaryl rings. The present disclosure also relates to their use in the emissive layer of organic electronic devices, such as, for example, organic light-emitting devices.
C07D 251/24 - Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
A well treatment fluid composition that includes a tetrakis(hydroxyorgano)phosphonium salt and 1,3-dimethylol-5,5-dimethylhydantoin. Methods for preparing a well treatment fluid composition and treating a subterranean formation are also presented.
C09K 8/60 - Compositions for stimulating production by acting on the underground formation
A01N 57/20 - Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals
A water-in-oil emulsion having an oil phase (O) and an aqueous phase (A) at an O/A ratio of from about 1 :8 to about 10: 1; wherein the water-in-oil emulsion includes the oil phase as a continuous phase that includes an inert hydrophobic liquid, and the aqueous phase as a dispersed phase of distinct particles in the oil phase that includes water, a water soluble polymer, and at least one surfactant; wherein the water soluble polymer includes from about 1 to about 60 weight percent of one or more cationic monomers, wherein the amount is by total weight of the water soluble polymer; wherein the water soluble polymer is present in an amount from about 5 to about 40 weight percent of the water-in-oil emulsion; and wherein an aqueous solution prepared by inverting the water- in-oil emulsion by adding it to water has at least comparable viscosity build to an aqueous solution made from a water-in-oil emulsion of the same composition containing 15 weight percent more water soluble polymer. Also provided is a method of treating a portion of a subterranean formation that includes the steps of: (a) providing a water-in- oil emulsion according to the present disclosure; (b) inverting the water-in-oil emulsion by adding it to water at from about 0.1 to about 5 gallons of water-in-oil emulsion per thousand gallons of water to form a friction reducing treatment solution containing from about 0.0005 weight percent to about 0.12 weight percent water soluble polymer based on the weight of the treatment solution; and (c) introducing the treatment solution into the portion of the subterranean formation.
C09K 8/62 - Compositions for forming crevices or fractures
C09K 8/68 - Compositions based on water or polar solvents containing organic compounds
F17D 1/17 - Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid
A well treatment fluid composition that includes a tetrakis(hydroxyorgano)phosphonium salt and at least one oxidizing viscosity breaker. Methods for preparing a microbial viscosity breaker composition and treating a subterranean formation are also presented.
A water-in-oil emulsion that includes an oil phase (O) and an aqueous phase (A) at an O/A ratio of from about 1:8 to about 10:1; wherein the water-in-oil emulsion includes the oil phase as a continuous phase that includes an inert hydrophobic liquid, at least one water-insoluble hydrophobic monomer, and at least one surfactant, and the aqueous phase as a dispersed phase of distinct particles in the oil phase that includes water and a water soluble polymer that includes: (i) at least one acrylamide monomer and (ii) at least one acrylic acid monomer; wherein the water soluble polymer is present in an amount from about 10 to about 35 weight percent of the water-in-oil emulsion. Also provided is water-in-oil emulsion that includes an oil phase (O) and an aqueous phase (A) at an O/A ratio of from about 1:8 to about 10:1; wherein the water-in-oil emulsion includes the oil phase as a continuous phase that includes an inert hydrophobic liquid and at least one surfactant, and the aqueous phase as a dispersed phase of distinct particles in the oil phase that includes water and a water soluble polymer that includes: (i) at least one acrylamide monomer, (ii) at least one acrylic acid monomer, and (iii) at least one water soluble hydrophobic monomer; wherein the water soluble polymer is present in an amount from 10 to 35 weight percent of the water-in-oil emulsion. Methods of treating a portion of a subterranean formation with a water-in-oil emulsion are also provided.
A composition and method for treating a fracturing fluid comprising produced water with high levels of dissolved solids using a polymer crosslinked with a boron compound and a high pH alkylamine buffer. The composition improves the viscosity stability of the fracturing fluid at elevated bottom-hole temperatures, particularly when the fluid has high levels of calcium and magnesium. The composition is particularly useful with polysaccharides, including galactomannan gums, such as guar gum, locust bean gum, and karaya gum, and allows for the use of the preferred boron compound crosslinkers in high total dissolved solids fracturing fluids without the pH destabilization problems encountered with the prior art.
C09K 8/08 - Clay-free compositions containing natural organic compounds, e.g. polysaccharides, or derivatives thereof
C09K 8/20 - Natural organic compounds or derivatives thereof, e.g. polysaccharides or lignin derivatives
C09K 8/588 - Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
A friction reducing treatment solution that includes water, from 100 to 500,000 ppm of total dissolved solids, and from 0.5 to 3 gallons per thousand gallons of a water- in-oil emulsion containing a water soluble polymer. The total dissolved solids include at least 10 weight percent of a multivalent cation. The water-in-oil emulsion includes an oil phase and an aqueous phase, where the oil phase is a continuous phase containing an inert hydrophobic liquid and the aqueous phase is present as dispersed distinct particles in the oil phase and contains water, the water soluble polymer, and surfactants and an inverting surfactant. The water soluble polymer is made up of 20 to 80 weight percent of a non- ionic monomer, 0.5 to 30 weight percent of a carboxylic acid containing monomer, and 5 to 70 weight percent of a cationic monomer and makes up from 10 to 35 weight percent of the water-in-oil emulsion.
A composition and method for treating a fracturing fluid comprising produced water with high levels of dissolved solids using a polymer crosslinked with a boron compound and a high pH alkylamine buffer. The composition improves the viscosity stability of the fracturing fluid at elevated bottom-hole temperatures, particularly when the fluid has high levels of calcium and magnesium. The composition is particularly useful with polysaccharides, including galactomannan gums, such as guar gum, locust bean gum, and karaya gum, and allows for the use of the preferred boron compound crosslinkers in high total dissolved solids fracturing fluids without the pH destabilization problems encountered with the prior art.
A device, such as an electroluminescent device, comprising (i) a transparent conductor; (ii) a metal grid disposed on said transparent conductor; and (iii) said metal grid is not covered by an insulator, but by a hole injection layer comprising at least one conjugated polymer and at least one matrix polymer. Methods for making the electroluminescent device are also disclosed.
H01L 51/50 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED)
H01L 51/52 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes (OLED) or polymer light emitting devices (PLED) - Details of devices
A method of treating a portion of a subterranean formation that includes: providing a water-in-oil emulsion, inverting the water-in-oil emulsion to form a friction reducing treatment solution, and introducing the treatment solution into the portion of the subterranean formation. The water-in-oil emulsion has an oil phase, an aqueous phase and surfactants. The oil phase (O) and an aqueous phase (A) are present at an O/A ratio of from about 1:8 to about 10:1. The oil phase is present as a continuous phase and contains an inert hydrophobic liquid. The aqueous phase is present as a dispersed phase of distinct particles in the oil phase and includes water and a water soluble polymer. The water soluble polymer makes up from 10 to 25 weight percent of the water-in-oil emulsion. The water-in-oil emulsion is inverted by adding it to water to form a friction reducing treatment solution.
[Problem] To provide a conductive polymer for solid electrolyte capacitor having outstanding solubility in solvents or dispersibility in solvents and which can produce a capacitor having outstanding capacitor characteristics in high-temperature environments. [Means Used to Resolve the Problem] A conductive polymer (A) for solid electrolyte capacitor containing substituted polythiophene (P) having thiophene repeating units (D) substituted by a least one type of group (s) selected from a group made up of a polyether group (a) indicated in general formula (1); an alkoxy group (b) having 1 to 15 carbon atoms; an alkoxy alkyl group (c) indicated in general formula (2); an alkyl group (d) having 1 to 15 carbon atoms; and a group (e) indicated in general formula (3); as well as thiophene repeating units (E) wherein the hydrogen atoms at position 3 and position 4 on the thiophene ring have been substituted by group (s) and sulfo group (-SO3H) (f).
C08G 61/12 - Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
C08L 65/00 - Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chainCompositions of derivatives of such polymers
H01B 1/12 - Conductors or conductive bodies characterised by the conductive materialsSelection of materials as conductors mainly consisting of other non-metallic substances organic substances
The composition described here comprises at least one hole-transporting compound, wherein the hole-transporting compound comprises a core covalently bonded to at least two arylamine groups, wherein the arylamine group optionally comprises one or more intractability groups. The composition can provide good film formation and stability when coated onto hole injection layers. Solution processing of hole transporting layers of OLEDs can be achieved with the composition described here. Good mobility can be achieved.
H01L 51/00 - Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
A well treating fluid useful in slickwater fracturing processes contains polyacrylamide friction reducer and a viscosity breaker capable of reducing the viscosity of the well treating fluid to about the viscosity of water at ambient temperatures of typical underground formations. The viscosity breaker is selected from the group consisting of hydrogen peroxide, calcium peroxide, magnesium peroxide, and zinc peroxide and is present in an amount above about 0.002% by weight.