The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.
C04B 28/24 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl ammonium or alkali metal silicatesCompositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing silica sols
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
C04B 7/345 - Hydraulic cements not provided for in one of the groups
C04B 40/02 - Selection of the hardening environment
A method of making a carbonated supplementary cementitious material is described that includes: selecting a raw material; reacting the raw material to form a synthetic formulation that can undergo a carbonation reaction; reacting the synthetic formulation with CO2 in the presence of water to form a carbonated supplemental cementitious material comprising calcium silicate and amorphous silica; subjecting the supplemental cementitious material to one or more of deagglomeration and grinding to produce a particle size distribution having a d10 of 1-5 μm and a d50 of 8-15 μm.
Synthetic pozzolans are produced using local materials to provide a cementitious material that is uniform in chemistry and properties independent of the location where the materials are obtained. Two methods of production are described. One is a high temperature process in which materials are processed in a semi-molten or molten state. The second process is a low temperature aqueous process.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
A method of forming a cured cement or concrete object is described that includes printing a carbonatable material and a CO2 source; and hardening the printed carbonatable material by a carbonation reaction. Associated cured and uncured objects, as well as related methods are also described.
A method of preparing a carbonated supplementary cementitious materials, includes carbonating the carbonatable mixture to obtain a first carbonated cementitious material, milling the first carbonated cementitious material, and carbonating the milled mixture to obtain the carbonated supplementary cementitious material.
A method of preparing a carbonated supplementary cementitious materials, includes carbonating the carbonatable mixture to obtain a first carbonated cementitious material, milling the first carbonated cementitious material, and carbonating the milled mixture to obtain the carbonated supplementary cementitious material.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 22/10 - Acids or salts thereof containing carbon in the anion, e.g. carbonates
7.
METHOD OF PREPARING SUPPLEMENTARY CEMENTITIOUS MATERIALS, AND SUPPLEMENTARY CEMENTITIOUS MATERIALS PREPARED THEREFROM
A method of preparing a carbonated supplementary cementitious materials, includes carbonating the carbonatable mixture to obtain a first carbonated cementitious material, milling the first carbonated cementitious material, and carbonating the milled mixture to obtain the carbonated supplementary cementitious material.
C04B 22/10 - Acids or salts thereof containing carbon in the anion, e.g. carbonates
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
8.
PRODUCTION OF SUPPLEMENTARY CEMENTITIOUS MATERIALS THROUGH SEMI-WET CARBONATION, CYCLIC CARBONATION, NON-SLURRY CARBONATION, HIGH TEMPERATURE CARBONATION AND GRANULATION CARBONATION
Methods for preparing a carbonated supplementary cementitious materials, including semi-wet carbonation, cyclic carbonation, non-slurry carbonation, high temperature carbonation and/or granular carbonation of a carbonatable material.
A high-silica-containing supplemental cementitious materials, and a method of producing same. This material undergoes a pozzolanic reaction during hydration in a mixture of Ordinary Portland Cement (OPC) or lime.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 40/02 - Selection of the hardening environment
10.
PRODUCTION OF SUPPLEMENTARY CEMENTITIOUS MATERIALS THROUGH SEMI-WET CARBONATION, CYCLIC CARBONATION, NON-SLURRY CARBONATION, HIGH TEMPERATURE CARBONATION AND GRANULATION CARBONATIO
Methods for preparing a carbonated supplementary cementitious materials, including semi- wet carbonation, cyclic carbonation, non- slurry carbonation, high temperature carbonation and/or granular carbonation of a carbonatable material.
B01F 23/237 - Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
A high-silica-containing supplemental cementitious materials, and a method of producing same. This material undergoes a pozzolanic reaction during hydration in a mixture of Ordinary Portland Cement (OPC) or lime.
PRODUCTION OF SUPPLEMENTARY CEMENTITIOUS MATERIALS THROUGH SEMI-WET CARBONATION, CYCLIC CARBONATION, NON-SLURRY CARBONATION, HIGH TEMPERATURE CARBONATION AND GRANULATION CARBONATION
Methods for preparing a carbonated supplementary cementitious materials, including semi- wet carbonation, cyclic carbonation, non- slurry carbonation, high temperature carbonation and/or granular carbonation of a carbonatable material.
B01F 23/237 - Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
C04B 40/02 - Selection of the hardening environment
A high-silica-containing supplemental cementitious materials, and a method of producing same. This material undergoes a pozzolanic reaction during hydration in a mixture of Ordinary Portland Cement (OPC) or lime.
C04B 40/02 - Selection of the hardening environment
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
A method of making a supplementary cementitious material is described that includes: forming a slurry comprising water and a carbonatable material powder, wherein a weight ratio of water to the carbonatable material powder is at least 1; and flowing a gas comprising carbon dioxide into the slurry for 0.5 to 24 hours while maintaining the slurry at a temperature of 1°C to 99°C to form a carbonated slurry comprising CaCO3 and amorphous silica. A method of forming cement or concrete using the supplemental cementitious material is also described.
A method of making a supplementary cementitious material is described that includes: forming a slurry comprising water and a carbonatable material powder, wherein a weight ratio of water to the carbonatable material powder is at least 1; and flowing a gas comprising carbon dioxide into the slurry for 0.5 to 24 hours while maintaining the slurry at a temperature of 1° C. to 99° C. to form a carbonated slurry comprising CaCO3 and amorphous silica. A method of forming cement or concrete using the supplemental cementitious material is also described.
The invention provides novel methods and novel additive compositions and use thereof in a wide range of concrete production for improving properties of concrete materials. The methods and compositions of the invention may be applied in a variety of cement and concrete components in the infrastructure, construction, pavement and landscaping industries.
A method of producing a carbonated composite material is described that includes: providing a carbonatable cementitious material in particulate form; mixing the carbonatable cementitious material with water to produce a mix; forming a predetermined shape with the mix, wherein the predetermined shape has an initial pore stmcture containing an initial pore solution having a first pH; pre-conditioning the predetermined shape to remove a predetermined amount of the water from the predetermined shape to produce a pre-? conditioned shape; carbonating the pre-conditioned shape in an environment comprising carbon dioxide to produce a modified pore stmcture containing a modified pore solution having and a second pH, wherein the difference between the first pH and the second pH is represented by a ?pH, and the ?pH is 1.0 or less, 0.75 or less, 0.5 or less, 0.25 or less, or about 0.0. A calcium silicate composition including solid components and liquid components having improved pore solution pH stability is also disclosed.
A method of producing a carbonated composite material is described that includes: providing a carbonatable cementitious material in particulate form; mixing the carbonatable cementitious material with water to produce a mix; forming a predetermined shape with the mix, wherein the predetermined shape has an initial pore stmcture containing an initial pore solution having a first pH; pre-conditioning the predetermined shape to remove a predetermined amount of the water from the predetermined shape to produce a pre-Δ conditioned shape; carbonating the pre-conditioned shape in an environment comprising carbon dioxide to produce a modified pore stmcture containing a modified pore solution having and a second pH, wherein the difference between the first pH and the second pH is represented by a ΔpH, and the ΔpH is 1.0 or less, 0.75 or less, 0.5 or less, 0.25 or less, or about 0.0. A calcium silicate composition including solid components and liquid components having improved pore solution pH stability is also disclosed.
Synthetic pozzolans are produced using local materials to provide a cementitious material that is uniform in chemistry and properties independent of the location where the materials are obtained. Two methods of production are described. One is a high temperature process in which materials are processed in a semi-molten or molten state. The second process is a low temperature aqueous process.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
Synthetic pozzolans are produced using local materials to provide a cementitious material that is uniform in chemistry and properties independent of the location where the materials are obtained. Two methods of production are described. One is a high temperature process in which materials are processed in a semi-molten or molten state. The second process is a low temperature aqueous process.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
A method of forming a plurality of cured concrete bodies, each body possessing a cured compressive strength, the disclosed method includes: introducing a flowable mixture of constituent components of the concrete into a plurality of molds; molding the flowable mixture within the plurality of molds with the aid of one or more support, thereby forming a plurality of green bodies; partially curing the green bodies to a degree sufficient to provide a compressive strength that is lower than the cured compressive strength, thereby producing a plurality of precured green bodies; assembling at least a portion of the plurality of pre-cured green bodies to form a collection thereof having a predetermined geometrical configuration; and curing the collection of pre-cured green bodies to a degree sufficient to achieve the cured compressive strength, thereby producing a collection of cured bodies having the predetermined geometrical configuration.
A method of forming a plurality of cured concrete bodies, each body possessing a cured compressive strength, the disclosed method includes: introducing a flowable mixture of constituent components of the concrete into a plurality of molds; molding the flowable mixture within the plurality of molds with the aid of one or more support, thereby forming a plurality of green bodies; partially curing the green bodies to a degree sufficient to provide a compressive strength that is lower than the cured compressive strength, thereby producing a plurality of precured green bodies; assembling at least a portion of the plurality of pre-cured green bodies to form a collection thereof having a predetermined geometrical configuration; and curing the collection of pre-cured green bodies to a degree sufficient to achieve the cured compressive strength, thereby producing a collection of cured bodies having the predetermined geometrical configuration.
A method of curing a low Ca/Mg cement composition is described that includes providing a predetermined quantity of the low Ca/Mg cement composition in uncured form; and reacting the uncured low Ca/Mg cement composition with a reagent chemical for a time sufficient to cure said cementitious material, wherein said reagent chemical is a compound synthesized from CO2 and comprises dicarboxylic acids, tricarboxylic acids, or alpha- hydroxycarboxylic acids.
C04B 24/04 - Carboxylic acidsSalts, anhydrides or esters thereof
C04B 24/06 - Carboxylic acidsSalts, anhydrides or esters thereof containing hydroxy groups
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
B65D 25/08 - Partitions with provisions for removing or destroying, e.g. to facilitate mixing of contents
B65D 81/32 - Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging two or more different materials which must be maintained separate prior to use in admixture
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 28/28 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing organic polyacids, e.g. polycarboxylate cements
27.
MITIGATION OF CORROSION IN CARBONATED CONCRETE BASED ON LOW-CALCIUM SILICATE CEMENT
(e.g(e.g., plain carbon steel) components used as reinforcement or otherwise at least partially embedded in carbonated concrete composite materials and objects based on carbonatable calcium silicate cement.
C08G 8/10 - Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
C04B 28/24 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl ammonium or alkali metal silicatesCompositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing silica sols
C04B 40/02 - Selection of the hardening environment
C04B 9/06 - Cements containing metal compounds other than magnesium compounds, e.g. compounds of zinc or lead
C04B 28/28 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing organic polyacids, e.g. polycarboxylate cements
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 111/00 - Function, property or use of the mortars, concrete or artificial stone
29.
COMPOSITE MATERIALS, METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel articles of composite materials having hollow interior channels or passageways, or otherwise being hollowed out, and formulations and methods for their manufacture and uses. These hollow core objects are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
C04B 40/02 - Selection of the hardening environment
E04C 2/18 - Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the likeBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of plasticsBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of foamed products of fibres, chips, vegetable stems, or the like with binding wires, reinforcing bars, or the like
The invention relates to carbonatable calcium silicate-based cements and concretes, which result in concrete compositions that have an improved aesthetics. The invention also relates to a cement product comprising: - a plurality of particles of a carbonatablecalcium silicate cement and - a first additive; wherein, the first additive is a hydrophobic organic acid, or a salt thereof, or a silane, or a polysiloxane.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
31.
COMPOSITIONS AND METHOD TO IMPROVE THE STRENGTH DEVELOPMENT OF CALCIUM SILICATE-BASED CEMENTS AND CONCRETES
The present invention relates to calcium silicate-based cements and concretes, which result in concrete compositions that have an improved strength development. The invention also relates to a cement product comprising: - a plurality of particles of a carbonatable calcium silicate cement and - a first additive; wherein, the first additive is an organic molecule with at least one primary, secondary or tertiary amine group. - Calcium silicate-based cements and concretes.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
32.
COMPOSITIONS AND METHOD TO IMPROVE THE DURABILITY OF CALCIUM SILICATE-BASED CEMENTS AND CONCRETES
The present invention relates to calcium silicate-based cements and concretes, which result in concrete compositions that have an increased durability. The present invention relates to a cement product comprising a plurality of particles of a carbonatable calcium silicate cement and a hydrophobic organic acid, or a salt thereof, or a silane, or a polysiloxane.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
33.
Carbonatable calcium silicate compositions and methods thereof
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 28/10 - Lime cements or magnesium oxide cements
C04B 7/345 - Hydraulic cements not provided for in one of the groups
34.
Compositions and method to improve the durability of calcium silicate-based cements and concretes
Calcium silicate-based cements and concretes are disclosed, which result in concrete compositions that have an increased durability. A cement product includes a plurality of particles of a carbonatable calcium silicate cement and a hydrophobic organic acid, or a salt thereof, or a silane, or a polysiloxane.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 24/08 - FatsFatty oilsEster type waxesHigher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl groupOxidised oils or fats
C04B 40/02 - Selection of the hardening environment
B32B 13/04 - Layered products essentially comprising a water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such substances as the main or only constituent of a layer, next to another layer of a specific substance
C04B 24/42 - Compounds having one or more carbon-to-silicon linkages
C04B 111/27 - Water resistance, i.e. waterproof or water-repellent materials
C04B 111/20 - Resistance against chemical, physical or biological attack
35.
MINERAL ADDITIVES AND PRODUCTION OF LIGHTWEIGHT COMPOSITE MATERIALS FROM CARBONATABLE CALCIUM SILICATE
ASAHI KASEI CONSTRUCTION MATERIALS CORPORATION (USA)
SOLIDIA TECHNOLOGIES, INC. (USA)
ASAHI KASEI HOMES CORPORATION (USA)
Inventor
Tas, Ahmet Cuneyt
Abstract
The invention provides novel aerated composite materials made from a carbonatable calcium silicate composition, and formulations and methods of manufacture and use thereof, in particular, the use of novel additive mineral compositions in the form of magnesium, magnesium salts or magnesium oxides, to improve physical chemical properties of low density concrete materials. The low density, aerated material is comprised of calcium carbonate (CaC03) and silica (Si02), as cured products of carbonatable calcium silicate compositions.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 38/02 - Porous mortars, concrete, artificial stone or ceramic warePreparation thereof by adding chemical blowing agents
C04B 40/02 - Selection of the hardening environment
36.
CARBONATABLE CALCIUM SILICATE-BASED CEMENTS AND CONCRETES HAVING MINERAL ADDITIVES, AND METHODS THEREOF
The invention provides novel methods and novel additive compositions and use thereof in a wide range of concrete production for improving properties of concrete materials, such as durability and aestheticity. The methods and compositions of the invention may be applied in a variety of cement and concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 22/12 - Acids or salts thereof containing halogen in the anion, e.g. calcium chloride
C04B 22/14 - Acids or salts thereof containing sulfur in the anion, e.g. sulfides
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 40/02 - Selection of the hardening environment
C04B 111/20 - Resistance against chemical, physical or biological attack
37.
MINERAL ADDITIVES AND PRODUCTION OF LIGHTWEIGHT COMPOSITE MATERIALS FROM CARBONATABLE CALCIUM SILICATE
The invention provides novel aerated composite materials made from a carbonatable calcium silicate composition, and formulations and methods of manufacture and use thereof, in particular, the use of novel additive mineral compositions in the form of magnesium, magnesium salts or magnesium oxides, to improve physical chemical properties of low density concrete materials. The low density, aerated material is comprised of calcium carbonate (CaC03) and silica (Si02), as cured products of carbonatable calcium silicate compositions.
C04B 38/02 - Porous mortars, concrete, artificial stone or ceramic warePreparation thereof by adding chemical blowing agents
C04B 40/02 - Selection of the hardening environment
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
The invention provides novel, microstructured clinker and cement materials that are characterized by superior grindability and reactivity. The disclosed clinker and cement materials are based on carbonatable calcium silicate and can be made from widely available, low cost raw materials via a process suitable for large-scale production. The method of the invention is flexible in equipment and processing requirements and is readily adaptable to manufacturing facilities of conventional Portland cement.
C04B 28/24 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl ammonium or alkali metal silicatesCompositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing silica sols
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
C04B 7/345 - Hydraulic cements not provided for in one of the groups
C04B 40/02 - Selection of the hardening environment
Apparatus and methods for improving the curing process of materials that cure under reaction with CO2 and that do not cure in the presence of water alone are described, and examples are given.
The invention provides novel apparatus and processes for gas flow and conditioning to achieve optimal CO2 curing of articles of composite materials (e.g., precast objects made of carbonatable calcium silicate-based cements), with solid interior or having hollow interior ducts, channels and chambers or otherwise being hollowed out, as well as the precast objects so made, which are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
B28B 11/24 - Apparatus or processes for treating or working the shaped articles for curing, setting or hardening
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
F26B 3/04 - Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over, or surrounding, the materials or objects to be dried
F26B 9/06 - Machines or apparatus for drying solid materials or objects at rest or with only local agitationDomestic airing cupboards in stationary drums or chambers
F26B 21/04 - Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
The invention provides novel apparatus and processes for gas flow and conditioning to achieve optimal CO2 curing of articles of composite materials (e.g., precast objects made of carbonatable calcium silicate-based cements), with solid interior or having hollow interior ducts, channels and chambers or otherwise being hollowed out, as well as the precast objects so made, which are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
B28B 11/24 - Apparatus or processes for treating or working the shaped articles for curing, setting or hardening
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
F26B 3/04 - Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over, or surrounding, the materials or objects to be dried
F26B 9/06 - Machines or apparatus for drying solid materials or objects at rest or with only local agitationDomestic airing cupboards in stationary drums or chambers
F26B 21/04 - Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure partly outside the drying enclosure
2 curing of articles of composite materials (e.g., precast objects made of carbonatable calcium silicate-based cements), with solid interior or having hollow interior ducts, channels and chambers or otherwise being hollowed out, as well as the precast objects so made, which are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
Synthetic pozzolans are produced using local materials to provide a cementitious material that is uniform in chemistry and properties independent of the location where the materials are obtained. Two methods of production are described. One is a high temperature process in which materials are processed in a semi-molten or molten state. The second process is a low temperature aqueous process.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
Synthetic pozzolans are produced using local materials to provide a cementitious material that is uniform in chemistry and properties independent of the location where the materials are obtained. Two methods of production are described. One is a high temperature process in which materials are processed in a semi-molten or molten state. The second process is a low temperature aqueous process.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
45.
HAZING CONTROL FOR CARBONATABLE CALCIUM SILICATE-BASED CEMENTS AND CONCRETES
The invention provides novel methods and compositions that mitigate the occurrence of hazing of products made from carbonatable calcium silicate-based cements. The methods and compositions of the invention may be applied in a variety of cement and concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
C04B 18/14 - Waste materialsRefuse from metallurgical processes
C04B 18/06 - Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
C04B 22/12 - Acids or salts thereof containing halogen in the anion, e.g. calcium chloride
C04B 22/14 - Acids or salts thereof containing sulfur in the anion, e.g. sulfides
C04B 111/20 - Resistance against chemical, physical or biological attack
The invention provides novel methods and compositions that mitigate the occurrence of hazing of products made from carbonatable calcium silicate-based cements. The methods and compositions of the invention may be applied in a variety of cement and concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 22/00 - Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 40/02 - Selection of the hardening environment
47.
WHITE CARBONATABLE CALCIUM SILICATE BASED CEMENTS AND METHODS OF PREPARATION AND USE THEREOF
The invention provides a new class of carbonatable calcium silicate-based, white clinkers and the ground cement produced from these clinkers, as well as methods of their production and use thereof. The disclosed white clinkers and the ground cement exhibit a high brightness and are suitable for use in products with high aesthetic considerations.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
C04B 40/02 - Selection of the hardening environment
A cementitious composition comprising a crystalline phase and an amorphous phase, and an activator selected from the group of materials comprising inorganic bases. In some cases the crystalline phase is gehlenite. In some cases the crystalline phase is anorthite. In some cases the amorphous phase is amorphous calcium aluminum silicate. In some cases the activator is elected from OPC (1-70 wt%), free lime (1-20 wt%), calcium hydroxide (1-20 wt%), and alkali hydroxides (NaOH, KOH 1 to 10 wt%), individually or in combination. A low lime cementitious material is cured by reaction with a curing reagent that includes a reagent chemical that is synthesized from CO2. Examples of such a reagent are oxalic acid and tartaric acid.
A cementitious composition comprising a crystalline phase and an amorphous phase, and an activator selected from the group of materials comprising inorganic bases. In some cases the crystalline phase is gehlenite. In some cases the crystalline phase is anorthite. In some cases the amorphous phase is amorphous calcium aluminum silicate. In some cases the activator is elected from OPC (1-70 wt%), free lime (1-20 wt%), calcium hydroxide (1-20 wt%), and alkali hydroxides (NaOH, KOH 1 to 10 wt%), individually or in combination. A low lime cementitious material is cured by reaction with a curing reagent that includes a reagent chemical that is synthesized from CO2. Examples of such a reagent are oxalic acid and tartaric acid.
C04B 40/02 - Selection of the hardening environment
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 28/34 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
C04B 32/00 - Artificial stone not provided for in other groups of this subclass
The invention provides a novel, steam-assisted production methodology and associated compositions and methods of use in the manufacture of carbonatable or non-carbonatable metal silicate or metal silicate hydrate (e.g., calcium silicate or calcium silicate hydrate) compositions. These metal silicate compositions and related phases are suitable for use hydraulic, partially hydraulic or non-hydraulic cement that sets and hardens by a hydration process, a carbonation process or a combination thereof, and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
52.
Steam-assisted production of metal silicate cements, compositions and methods thereof
The invention provides a novel, steam-assisted production methodology and associated compositions and methods of use in the manufacture of carbonatable or non-carbonatable metal silicate or metal silicate hydrate (e.g., calcium silicate or calcium silicate hydrate) compositions. These metal silicate compositions and related phases are suitable for use hydraulic, partially hydraulic or non-hydraulic cement that sets and hardens by a hydration process, a carbonation process or a combination thereof, and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 7/345 - Hydraulic cements not provided for in one of the groups
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 12/04 - Alkali metal or ammonium silicate cements
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 32/00 - Artificial stone not provided for in other groups of this subclass
2 Composite Material (CCM) and processes that use such equipment to cure the CCM. The method provides a way to compute the expected water distribution in an uncured porous concrete product based on a set of environmental conditions on.
ASAHI KASEI CONSTRUCTION MATERIALS CORPORATION (Japan)
SOLIDIA TECHNOLOGIES, INC. (USA)
Inventor
Atakan, Vahit
Sahu, Sadananda
Takase, Hirotaka
Kamata, Takayuki
Kanno, Katsuhiko
Fukasawa, Yoshihito
Deo, Omkar
Vuong, David
Abstract
An aerated composite material produced from carbonatable calcium silicate compositions (carbonation cured AAC) that has a compressive strength equivalent to autoclaved aerated concrete (ordinary AAC) at substantially the same density and a process of production of the same are provided. The composite material of the present invention comprises: a plurality of bonding elements, each including a core comprising calcium silicate, a first layer which partially or fully surrounds the core and is rich in SiO2, and a second layer which partially or fully surrounds the first layer and is rich in CaCO3; a plurality of filler particles having their particle sizes ranging from 0.1 um to 1000 um; and a plurality of voids; wherein the plurality of bonding elements and plurality of filler particles together form a bonding matrix and are substantially evenly dispersed in the matrix and bonded together, and the plurality of voids are bubble-shaped and/or interconnected channels.
ASAHI KASEI CONSTRUCTION MATERIALS CORPORATION (Japan)
Inventor
Atakan, Vahit
Sahu, Sadanda
Takase, Hirotaka
Kamata, Takayuki
Kanno, Katsuhiko
Fukasawa, Yoshihito
Deo, Omkar
Vuong, David
Abstract
An aerated composite material produced from carbonatable calcium silicate compositions (carbonation cured AAC) that has a compressive strength equivalent to autoclaved aerated concrete (ordinary AAC) at substantially the same density and a process of production of the same are provided. The composite material of the present invention comprises: a plurality of bonding elements, each including a core comprising calcium silicate, a first layer which partially or fully surrounds the core and is rich in SiO2, and a second layer which partially or fully surrounds the first layer and is rich in CaCO3; a plurality of filler particles having their particle sizes ranging from 0.1 um to 1000 um; and a plurality of voids; wherein the plurality of bonding elements and plurality of filler particles together form a bonding matrix and are substantially evenly dispersed in the matrix and bonded together, and the plurality of voids are bubble-shaped and/or interconnected channels.
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
56.
COMPOSITE MATERIALS AND BONDING ELEMENTS FROM CARBONATION OF CALCIUM SILICATE AND METHODS THEREOF
The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.
The invention provides novel, microstructured clinker and cement materials that are characterized by superior grindability and reactivity. The disclosed clinker and cement materials are based on carbonatable calcium silicate and can be made from widely available, low cost raw materials via a process suitable for large-scale production. The method of the invention is flexible in equipment and processing requirements and is readily adaptable to manufacturing facilities of conventional Portland cement.
C04B 40/02 - Selection of the hardening environment
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
C04B 7/345 - Hydraulic cements not provided for in one of the groups
58.
COMPOSITE MATERIALS AND BONDING ELEMENTS FROM CARBONATION OF CALCIUM SILICATE AND METHODS THEREOF
The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 7/345 - Hydraulic cements not provided for in one of the groups
59.
MICROSTRUCTURED CARBONATABLE CALCIUM SILICATE CLINKERS AND METHODS THEREOF
The invention provides novel, microstructured clinker and cement materials that are characterized by superior grindability and reactivity. The disclosed clinker and cement materials are based on carbonatable calcium silicate and can be made from widely available, low cost raw materials via a process suitable for large-scale production. The method of the invention is flexible in equipment and processing requirements and is readily adaptable to manufacturing facilities of conventional Portland cement.
The invention provides novel, microstructured clinker and cement materials that are characterized by superior grindability and reactivity. The disclosed clinker and cement materials are based on carbonatable calcium silicate and can be made from widely available, low cost raw materials via a process suitable for large-scale production. The method of the invention is flexible in equipment and processing requirements and is readily adaptable to manufacturing facilities of conventional Portland cement.
C04B 28/24 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl ammonium or alkali metal silicatesCompositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing silica sols
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
C04B 7/345 - Hydraulic cements not provided for in one of the groups
C04B 40/02 - Selection of the hardening environment
The invention provides composite materials comprising novel bonding elements exhibiting unique microstructures and chemical compositions, and methods for their manufacture and uses, for example, in a variety of concrete components with or without aggregates in the infrastructure, construction, pavement and landscaping industries.
C04B 28/24 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl ammonium or alkali metal silicatesCompositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing silica sols
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
C04B 7/345 - Hydraulic cements not provided for in one of the groups
C04B 40/02 - Selection of the hardening environment
The invention provides compositions and methods for controlling setting of carbonatable calcium silicate compositions that are contaminated with hydrating materials. These carbonatable calcium silicate cements are suitable for use as non-hydraulic cement that hardens by a carbonation process and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
The invention provides compositions and methods for controlling setting of carbonatable calcium silicate compositions that are contaminated with hydrating materials. These carbonatable calcium silicate cements are suitable for use as non-hydraulic cement that hardens by a carbonation process and may be applied in a variety of concrete components in the infrastructure, construction, pavement and landscaping industries.
C04B 28/24 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl ammonium or alkali metal silicatesCompositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing silica sols
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 28/10 - Lime cements or magnesium oxide cements
C04B 111/00 - Function, property or use of the mortars, concrete or artificial stone
64.
CARBONATABLE CALCIUM SILICATE COMPOSITIONS AND METHODS THEREOF
The invention provides novel carbonatable calcium silicate compositions and carbonatable calcium silicate phases that are made from widely available, low cost raw materials by a process suitable for large-scale production. The method of the invention is flexible in equipment and production requirements and is readily adaptable to manufacturing facilities of conventional cement. The invention offers an exceptional capability to permanently and safely sequesters CO2.
C04B 28/00 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
C04B 40/02 - Selection of the hardening environment
65.
CARBONATABLE CALCIUM SILICATE COMPOSITIONS AND METHODS THEREOF
The invention provides novel carbonatable calcium silicate compositions and carbonatable calcium silicate phases that are made from widely available, low cost raw materials by a process suitable for large-scale production. The method of the invention is flexible in equipment and production requirements and is readily adaptable to manufacturing facilities of conventional cement. The invention offers an exceptional capability to permanently and safely sequesters CO2.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
66.
METHOD AND APPARATUS FOR THE CURING OF COMPOSITE MATERIAL BY CONTROL OVER RATE LIMITING STEPS IN WATER REMOVAL
The invention encompasses equipment used to condition a recirculating gas stream in order to cure a CO2 Composite Material (CCM) and processes that use such equipment to cure the CCM. The gas conditioning equipment allows for a process that controls, reduces or eliminates the rate-limiting steps associated with water removal during the curing of a composite material. The equipment may include, but will not be limited to, control over the temperature, relative humidity, flow rate, pressure, and carbon dioxide concentration within the system; which includes the conditioning equipment, any vessel containing the CCM, and the material itself. Flow rate control can be used as a means to achieve uniformity in both gas velocity and composition.
B01D 53/14 - Separation of gases or vapoursRecovering vapours of volatile solvents from gasesChemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases or aerosols by absorption
G05D 7/06 - Control of flow characterised by the use of electric means
G05D 11/08 - Controlling ratio of two or more flows of fluid or fluent material with auxiliary non-electric power by sensing concentration of mixture, e.g. by measuring pH-value
67.
METHOD AND APPARATUS FOR THE CURING OF COMPOSITE MATERIAL BY CONTROL OVER RATE LIMITING STEPS IN WATER REMOVAL
The invention encompasses equipment used to condition a recirculating gas stream in order to cure a CO2 Composite Material (CCM) and processes that use such equipment to cure the CCM. The gas conditioning equipment allows for a process that controls, reduces or eliminates the rate-limiting steps associated with water removal during the curing of a composite material. The equipment may include, but will not be limited to, control over the temperature, relative humidity, flow rate, pressure, and carbon dioxide concentration within the system; which includes the conditioning equipment, any vessel containing the CCM, and the material itself. Flow rate control can be used as a means to achieve uniformity in both gas velocity and composition.
C04B 28/10 - Lime cements or magnesium oxide cements
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
C04B 40/02 - Selection of the hardening environment
C04B 7/345 - Hydraulic cements not provided for in one of the groups
69.
METHOD AND APPARATUS FOR CURING CO2 COMPOSITE MATERIAL OBJECTS AT NEAR AMBIENT TEMPERATURE AND PRESSURE
Apparatus and methods for curing composite compositions that react with CO2. The apparatus in general includes an easily transportable and easily assembled curing structure, such as a plastic sheet housing supported by gas pressure and/or by mechanical supports. Apparatus for providing reagent CO2, for measuring water content and for removing water, and for controlling temperature, flow rates and flow directions through the curing structure. Examples of curing procedures and examples of cured materials in desired shapes are described.
Apparatus and methods for curing composite compositions that react with CO2. The apparatus in general includes an easily transportable and easily assembled curing structure, such as a plastic sheet housing supported by gas pressure and/or by mechanical supports. Apparatus for providing reagent CO2, for measuring water content and for removing water, and for controlling temperature, flow rates and flow directions through the curing structure. Examples of curing procedures and examples of cured materials in desired shapes are described.
The invention provides novel methods for anticorrosive protection of iron or steel surfaces, such as on embedded iron or steel reinforcement components in composite materials and on steel surfaces of piles and vessels. The unique siderite coating formed during a carbonation curing possesses excellent anticorrosive properties and is suitable for improving the overall service life of coated objects.
B22F 7/08 - Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
72.
HOLLOW-CORE ARTICLES AND COMPOSITE MATERIALS, METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel articles of composite materials having hollow interior channels or passageways, or otherwise being hollowed out, and formulations and methods for their manufacture and uses. These hollow core objects are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
E04C 2/18 - Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the likeBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of plasticsBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of foamed products of fibres, chips, vegetable stems, or the like with binding wires, reinforcing bars, or the like
73.
HOLLOW-CORE ARTICLES AND COMPOSITE MATERIALS, METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel articles of composite materials having hollow interior channels or passageways, or otherwise being hollowed out, and formulations and methods for their manufacture and uses. These hollow core objects are suitable for a variety of applications in construction, pavements and landscaping, and infrastructure.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
E04C 2/18 - Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the likeBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of plasticsBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of foamed products of fibres, chips, vegetable stems, or the like with binding wires, reinforcing bars, or the like
74.
AERATED COMPOSITE MATERIALS, METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
B28B 1/50 - Producing shaped articles from the material specially adapted for producing articles of expanded material, e.g. cellular concrete
B28B 5/00 - Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
B28B 11/24 - Apparatus or processes for treating or working the shaped articles for curing, setting or hardening
B28B 11/14 - Apparatus or processes for treating or working the shaped articles for dividing shaped articles by cutting
C04B 20/00 - Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups and characterised by shape or grain distributionTreatment of materials according to more than one of the groups specially adapted to enhance their filling properties in mortars, concrete or artificial stoneExpanding or defibrillating materials
C04B 38/02 - Porous mortars, concrete, artificial stone or ceramic warePreparation thereof by adding chemical blowing agents
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
E04C 1/00 - Building elements of block or other shape for the construction of parts of buildings
75.
AERATED COMPOSITE MATERIALS, METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
C04B 38/10 - Porous mortars, concrete, artificial stone or ceramic warePreparation thereof by using foaming agents
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
The invention provides novel pervious composite materials that possess excellent physical and performance characteristics of conventional pervious concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
A method of preparing and rapidly curing a composite material having a thin cross section. The composite material includes a mixture of solid particles, at least some of which are a material that reacts with C02, such as a silicate, for example Wollastonite. The green material is prepared by mixing the solid components with a liquid such as water to form a slurry, and forming green bodies by placing the slurry in forms. The green bodies are reacted with C02 to form cured composite materials having thin sections, in the range of 10 to 15 mm. Curing in periods of 6 hours has been demonstrated.
C04B 40/02 - Selection of the hardening environment
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
The invention provides novel paving stones and construction block composite materials and methods for preparation thereof. The paving stones and construction block composite materials can be readily produced from widely available, low cost precursor materials by a production process that involves compacting in a mold that is suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which can comprise silicon dioxide-rich materials. Additives can include calcium carbonate-rich and magnesium carbonate-rich materials. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide). These paving stones and construction block composite materials exhibit visual patterns similar to stone as well as display compressive strength and water absorption equal to or better than that of stone.
C04B 35/22 - Shaped ceramic products characterised by their compositionCeramic compositionsProcessing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxides based on silicates other than clay rich in calcium oxide
C04B 28/18 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
81.
COMPOSITE RAILROAD TIES AND METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel railroad ties manufactured from novel composite materials that possess excellent physical and performance characteristics matching or exceeding existing concrete RRTs. The RRTs of the invention can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption and more desirable carbon footprint and minimal environmental impact.
E01B 3/44 - Transverse or longitudinal sleepersOther means resting directly on the ballastway for supporting rails made from other materials only if the material is essential
E01B 3/46 - Transverse or longitudinal sleepersOther means resting directly on the ballastway for supporting rails made from different materials
82.
COMPOSITE RAILROAD TIES AND METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel railroad ties (RRTs) manufactured from novel composite materials that possess excellent physical and perfoimance characteristics matching or exceeding existing concrete RRTs. The RRTs of the invention can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption and more desirable carbon footprint and minimal environmental impact. In particular, a railroad tie having an elongated tie body is provided prepared from a composite material comprising: a plurality of bonding elements, wherein each bonding element comprises: a core comprising primarily calcium silicate, a silica-rich first or inner layer, and a calcium carbonate-rich second or outer layer; and filler particles, wherein the plurality of bonding elements and the plurality of filler particles together form one or more bonding matrices and the bonding elements and the filler particles are dispersed therein and bonded together, wherein the elongated tie body has one or more longitudinally disposed ducts.
E01B 3/44 - Transverse or longitudinal sleepersOther means resting directly on the ballastway for supporting rails made from other materials only if the material is essential
E01B 3/46 - Transverse or longitudinal sleepersOther means resting directly on the ballastway for supporting rails made from different materials
83.
AERATED COMPOSITE MATERIALS, METHODS OF PRODUCTION AND USES THEREOF
The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
C04B 38/02 - Porous mortars, concrete, artificial stone or ceramic warePreparation thereof by adding chemical blowing agents
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/00 - Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
C04B 40/02 - Selection of the hardening environment
E04C 2/04 - Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like materialBuilding elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of asbestos cement
C04B 111/20 - Resistance against chemical, physical or biological attack
84.
CURING SYSTEMS FOR MATERIALS THAT CONSUME CARBON DIOXIDE
The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process.
The invention provides a curing system that is useful for curing materials that consume carbon dioxide as a reagent. The system has a curing chamber that contains the material to be cured and a gas that contains carbon dioxide. The system includes apparatus that can deliver carbon dioxide to displace ambient air upon loading the system, that can provide carbon dioxide as it is needed and as it is consumed, that can control carbon dioxide concentration, temperature and humidity in the curing chamber during the curing cycle and that can record and display to a user the variables that occur during the curing process.
The invention provides novel paving stones and construction block composite materials and methods for preparation thereof. The paving stones and construction block composite materials can be readily produced from widely available, low cost precursor materials by a production process that involves compacting in a mold that is suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which can comprise silicon dioxide-rich materials. Additives can include calcium carbonate -rich and magnesium carbonate-rich materials. Various additives can be used to fine- tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide). These paving stones and construction block composite materials exhibit visual patterns similar to stone as well as display compressive strength and water absorption equal to or better than that of stone.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment
87.
PAVERS AND BLOCK COMPOSITE MATERIALS AND METHODS OF PREPARATION THEREOF
The invention provides novel paving stones and construction block composite materials and methods for preparation thereof. The paving stones and construction block composite materials can be readily produced from widely available, low cost precursor materials by a production process that involves compacting in a mold that is suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which can comprise silicon dioxide-rich materials. Additives can include calcium carbonate -rich and magnesium carbonate-rich materials. Various additives can be used to fine- tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide). These paving stones and construction block composite materials exhibit visual patterns similar to stone as well as display compressive strength and water absorption equal to or better than that of stone.
C04B 28/02 - Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
C04B 40/02 - Selection of the hardening environment