A loader slot bearing includes a housing and a truncated ball. The housing has an interior area that is defined by an inner bearing surface which has a concave contour defining a circumference. A single slot extends axially partway into the inner bearing surface and has a slot arc section area extending axially inward. The slot arc section area has a first circumferential slot-end, a second circumferential slot-end, and a slot arc length measured between the first circumferential slot-end and the second circumferential slot-end. A ratio of the slot arc length to the circumference of the interior area is about 0.20 to 0.35. The truncated ball has a convex exterior surface. The truncated ball is positioned in the slot and rotated so that the truncated ball is rotatably retained by the inner bearing surface. The truncated ball is angularly misalignable relative to the annular housing.
A wear resistant bearing system includes an inner member that has an internal core and a bearing surface which has a 50 Rockwell C scale hardness or greater. The inner member has a chemical composition that is uniform throughout the internal core and the bearings surface. The wear resistant bearing system includes an outer member that partially surrounds the inner member and includes a receiving surface that has liner system adhered thereto. The liner system includes a wear resistant matrix that has one or more reinforcing fiber systems and has one or more lubricative fibers system dispersed in the wear resistant matrix. The liner system has a wear surface that has portions of both the reinforcing fiber system and the lubricative fiber system. The wear surface is continuous.
A coating composition includes an epoxy resin including an epoxy monomer, a toughener and one or more self-lubricating fillers. The coating composition can be employed in a bearing that has an outer member that has a radially inwardly facing surface that defines an interior area. An inner member is disposed in the interior area. The inner member has a radially outward facing bearing surface. The coating composition is disposed between the radially inwardly facing surface and the radially outward facing bearing surface.
A cartridge seal assembly includes an outer housing including a first tubular segment having a first axial end and a second axial end, and a first flange extending radially inward from the second axial end; an inner housing including a second tubular segment having a third axial end and a fourth axial end, and a second flange extending radially inward from the fourth axial end; and a first seal ring having a first tapered inner circumferential surface that defines a first passage through the first seal ring. The inner housing is removably secured to the outer housing, and the first seal ring engages a portion of one of the inner housing and the outer housing.
A spherical plain bearing includes an outer ring having a concave interior spherical surface, and an inner member having a convex exterior spherical surface. The inner member is pivotally disposed in the outer ring such that the inner member and the outer ring are angularly misalignable relative to one another. The spherical plain bearing includes an angular misalignment restraint system which includes an inner member restraint feature on the inner member and an outer ring restraint feature on the outer member. The first and second portions are spaced apart when the inner member and the outer ring are angularly misaligned relative to one another by less than a predetermined maximum angle θ, and come into abutment when the inner member and the outer ring are angularly misaligned relative to one another by angle θ. The abutment prevents any further relative angular misalignment of the inner member and the outer ring.
A wear resistant composite material includes a first thickness of material, a second thickness of material, and a thickness of wear indicator located between and engaging the first thickness of material and the second thickness of material. The thickness of wear indicator has a colorant therein.
A linear guide mechanism includes a housing having an inside housing surface that defines a bore extending through the housing coaxial with a longitudinal axis. A shaft is disposed at least partially in the bore and is reciprocatably and linearly moveable in the bore along the longitudinal axis. The shaft has an exterior shaft surface. A self-lubricating liner is disposed in the bore between the inside housing surface and the exterior shaft surface. The self-lubricating liner has an inside liner surface that is in sliding engagement with the exterior shaft surface of the shaft. The self-lubricating liner has an exterior liner surface.
A spherical plain bearing includes an outer ring and an inner ring that are each coaxial with a longitudinal axis of the bearing. The outer ring has a first axial outer ring end, a second axial outer ring end, and an interior spherical concave bearing surface extending therebetween. The inner ring has a first axial inner ring end, a second axial inner ring end, and an interior cylindrical bearing surface defining a bore and an exterior spherical convex bearing surface extending therebetween. The exterior spherical convex bearing surface is in interfacial sliding engagement with the interior spherical concave bearing surface. A plurality of circumferential lubrication grooves and one or more curved lubrication channels are in the exterior spherical convex bearing surface. The curved lubrication channels are positioned to intersect each of the circumferential lubrication grooves. A plurality of profiled annular lubrication grooves circumferentially extend into the interior cylindrical bearing surface.
A loader slot bearing includes an annular housing having first and second axial surfaces and an interior area extending therebetween. The interior area has a first inner surface that extends between the first and second axial surfaces. A portion of the inner surface is a first bearing surface that has a spherical contour. A slot extends partially into the first inner surface from the first axial surface. The slot has a first width. The annular housing is manufactured from a precipitation hardened corrosion resistant stainless steel. The loader slot bearing includes a truncated ball that is positioned in the slot and rotated so that the truncated ball is rotatably retained by the first bearing surface. The truncated ball is angularly misalignable relative to the housing and is manufactured from a 440C stainless steel. A dry lubricant is applied to the spherical exterior surface of the truncated ball.
A loader slot bearing includes a housing and a truncated ball. The housing has an interior area that is defined by an inner bearing surface which has a concave contour defining a circumference. A single slot extends axially partway into the inner bearing surface and has a slot arc section area extending axially inward. The slot arc section area has a first circumferential slot-end, a second circumferential slot-end, and a slot arc length measured between the first circumferential slot-end and the second circumferential slot-end. A ratio of the slot arc length to the circumference of the interior area is about 0.20 to 0.35. The truncated ball has a convex exterior surface. The truncated ball is positioned in the slot and rotated so that the truncated ball is rotatably retained by the inner bearing surface. The truncated ball is angularly misalignable relative to the annular housing.
A joint bushing that accommodates the dithering and sliding in multi segment wind turbines. The joint bushing includes a self-lubricating liner that is a composite system incorporating woven Polytetrafluoroethylene fibers intermixed with structural reinforcement fibers in a composite matrix. The composite system provides sufficient life without requiring relubrication.
A joint bushing that accommodates the dithering and sliding in multi segment wind turbines. The joint bushing includes a self-lubricating liner that is a composite system incorporating woven Polytetrafluoroethylene fibers intermixed with structural reinforcement fibers in a composite matrix. The composite system provides sufficient life without requiring re-lubrication.
An anti-wear composite structure includes an anti-wear layer that has a wear surface opposite an adhesive receiving surface and a thermosetting resin applied to the adhesive receiving surface. The thermosetting resin includes a reactive adhesive configured to bond the anti-wear composite structure to a substrate at an ambient temperature band via pressure-sensitive adhesion. The thermosetting resin has an onset to cure in the ambient temperature band and has a peak cure temperature greater than the ambient temperature band to mechanically and chemically bond the anti-wear composite structure to a substrate.
B32B 37/06 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 37/10 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using direct action of vacuum or fluid pressure
C09J 7/40 - Adhesives in the form of films or foils characterised by release liners
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
B32B 37/12 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
B32B 37/26 - Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer which influences the bonding during the laminating process, e.g. release layers or pressure equalising layers
A railway switch system includes a base plate that has an exterior surface and a movable elongate rail that has a mounting flange that has an exterior surface that faces the exterior surface of the base plate. The railway switch system includes a lubricious liner disposed between the base plate and the mounting flange and mounted in parallel engagement on top of a substrate that is one of: the exterior surface of the base plate, the exterior surface of the mounting flange, and an exterior surface of an intervening plate disposed between the base plate and the mounting flange. The lubricious liner has an exposed bearing surface, has a second width, extends continuously across the second width, and is substantially planar. The lubricious liner consists of a non-metallic graphite free material consisting of a blend of polymer resin, fibers and a lubricant.
A spherical bearing includes an inner member that has an exterior surface extending a first width between axial ends thereof and having a first central plane located equidistant between the axial ends. The spherical bearing includes an outer member with a inner surface having a maximum inside diameter at an apex plane and extending a second width between opposing ends thereof and having second central plane located equidistant between the ends thereof. The inner member is disposed in an interior area of the outer member. The first central plane is coplanar with the apex plane and is axially offset from the second central plane. One of the opposing axial ends of the inner member is located entirely in the interior area and axially inward from ends of the outer member when the inner member is angularly misaligned relative to the outer member at non-zero angles up to 7 degrees.
A ball bearing and housing assembly includes a shaft having a stepped bore extending therethrough. The stepped bore is defined by a first bore segment having an inboard cylindrical interior surface that has a first bore diameter. The first bore segment extends from a shaft end and terminates at a shoulder. The shoulder is axially located between a first radial centerline of a plurality of balls and an inner axial end. The stepped bore is further defined by a second bore segment having an outboard cylindrical interior surface that has second bore diameter. The second bore segment extends axially from the inner axial end towards the shaft end and terminates at the shoulder. The second bore diameter is greater than the first bore diameter. A fastener is fitted through the first bore segment and threaded into a housing.
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
F16C 35/04 - Rigid support of bearing unitsHousings, e.g. caps, covers in the case of ball or roller bearings
A seal for a flexible alignment sealing coupling. The seal includes an annular member being symmetric about a longitudinal axis. The annular member has a radially inward facing surface extending an axial width between a first axial end and a second axial end. In a relaxed state of the seal, the radially inward facing surface has an asymmetric generally concave V-shaped cross section and is defined by a first section and a second section. The first section has a first seal taper angle measured relative to a line parallel to the longitudinal axis. The second section has a second seal taper angle measured relative to another line parallel to the longitudinal axis. The first seal taper angle is less than the second seal taper angle. Each of the first seal taper angle and the second seal taper angle is greater than zero degrees and less than 90 degrees.
F16L 27/113 - Adjustable jointsJoints allowing movement comprising a flexible connection only the ends of the pipe being interconnected by a rigid sleeve
F16J 15/34 - Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
F16L 27/10 - Adjustable jointsJoints allowing movement comprising a flexible connection only
18.
Rotor blade lead-lag hydraulic damper with centrifugal force compensating damping characteristics
A piston assembly for a lead-lag damper for a blade mounted on a rotor of a helicopter includes a piston-rod that has an inside surface and a piston-head that extends radially outward therefrom. The piston-rod has two ports extending therethrough on opposing sides of the piston-head. A sleeve is positioned in the piston-rod and has two annular passages that communicate with the respective ports. A valve spool is disposed in and slidingly engages the sleeve. The valve spool has a channel which is in variable fluid communication with two passages. The piston assembly includes a biasing member that biases the valve spool axially away from it. The channel has an axial width configured to variably regulate fluid flow between the two ports to control dampening of the piston-rod in response to centrifugal forces applied to the valve spool.
A cam follower for a ram of a metal can necker machine is provided. The cam follower has an outer ring and an inner ring coaxially disposed in the outer ring. A plurality of rolling elements is disposed in an annular cavity between the outer ring and the inner ring. The plurality of rolling elements is disposed between a first seal and a second seal. A shaft is received in a bore in the inner ring and is fixed relative thereto about the shaft axis. The outer ring is received in a tire. The tire has a thickness and a crown radius. The composition of the tire includes a metallic material, a plastic material, a non-metallic material, and combinations thereof.
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
A spherical bearing for a damper system includes a first segment and a second segment with a ball therebetween. The ball includes a shaft extending therefrom. The shaft extends out of the first segment. A lubricious liner is disposed between the first segment and the second segment.
A light-weight bearing component for sliding or rolling engagement with a mating surface includes a core lattice structure that has a plurality of support members interconnected with one another and a plurality of spaces located between the support members. The bearing component includes a cover that has an interior surface and an exterior surface. The cover extends over a portion of or all of the core lattice structure.
An axial retainment system for a shaft is provided. The axial retainment system includes a cylindrical body extending from an outboard end to an inboard end thereof, and a swaged ridge extending radially outward from the cylindrical body proximate the outboard end. The swaged ridge has an outboard axial surface facing toward the outboard end and extending radially outward and terminating at a radially outward facing circumferential surface. The swaged ridge has an inboard axial surface facing toward the inboard end and extending radially outward from the cylindrical body and terminating at the radially outward facing circumferential surface. The outboard axial surface of the swaged ridge is recessed axially inward from the outboard end of the shaft. The inboard axial surface of the swaged ridge is swaged against, conforms in shape to, and is compressed against a component to be axially retained on the shaft.
F16C 19/28 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
23.
Double row needle track roller bearing with a thrust load carrying ball bearing
A bearing includes an outer ring with a first outer roller race, a second outer roller race, and a radially inward facing outer ball race. The bearing includes a first and second inner rings that axially abutting one another at an abutment interface. The first inner ring has a first inner roller race, the second inner ring has a second inner roller race that are disposed in an interior area coaxially with the outer ring. A plurality of first rollers rollingly engage the first outer roller race and the first inner roller race. A plurality of second rollers rollingly engage the second outer roller race and the second inner roller race. A plurality of balls rollingly engage the outer ball race and the inner ball race.
F16C 19/28 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
24.
Permanent, self-adhering, self-lubricating, anti-wear composite system
An anti-wear composite structure includes an anti-wear layer that has a wear surface opposite an adhesive receiving surface and a thermosetting resin applied to the adhesive receiving surface. The thermosetting resin includes a reactive adhesive configured to bond the anti-wear composite structure to a substrate at an ambient temperature band via pressure-sensitive adhesion. The thermosetting resin has an onset to cure in the ambient temperature band and has a peak cure temperature greater than the ambient temperature band to mechanically and chemically bond the anti-wear composite structure to a substrate.
C09J 7/40 - Adhesives in the form of films or foils characterised by release liners
B32B 5/02 - Layered products characterised by the non-homogeneity or physical structure of a layer characterised by structural features of a layer comprising fibres or filaments
B32B 27/12 - Layered products essentially comprising synthetic resin next to a fibrous or filamentary layer
A piston assembly including a shaft having a piston arrangement. The piston arrangement has a retract-area on one side and a extend-area on the opposite side. The retract-area is larger than the extend-area so that when fluid exerts a force on the retract-area the piston arrangement generates and applies a retract force to the shaft. Upon release of the fluid pressure to the retract-area and application of the fluid pressure to the extend-area the piston arrangement generates and applies an extend force to the shaft. The retract force is greater than or equal to the extend force.
F15B 15/17 - Fluid-actuated devices for displacing a member from one position to anotherGearing associated therewith characterised by the construction of the motor unit of the straight-cylinder type of differential-piston type
A low profile flexible coupling for high temperature/high pressure and low temperature/low pressure pneumatic systems and a tool and a method for installing the flexible coupling. The flexible coupling includes an annular inner member having a convex seal receiving surface, an annular outer member that is assembled over the inner member having a first concave sealing surface conforming to the convex seal receiving surface and a locking member assembled over the inner member and having a second concave sealing surface that conforms to the convex seal receiving surface. The outer member is positioned over the locking member.
F16L 27/06 - Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly-spherical engaging surfaces with special sealing means between the engaging surfaces
F16L 27/047 - Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction with partly-spherical engaging surfaces held in place by a screwed member having an internal spherical surface
B25B 13/50 - SpannersWrenches for special purposes for operating on work of special profile, e.g. pipes
28.
Rapid movement loader slot bearing suitable for use on munitions deployment structures
A loader slot bearing includes an annular housing having first and second axial surfaces and an interior area extending therebetween. The interior area has a first inner surface that extends between the first and second axial surfaces. A portion of the inner surface is a first bearing surface that has a spherical contour. A slot extends partially into the first inner surface from the first axial surface. The slot has a first width. The annular housing is manufactured from a precipitation hardened corrosion resistant stainless steel. The loader slot bearing includes a truncated ball that is positioned in the slot and rotated so that the truncated ball is rotatably retained by the first bearing surface. The truncated ball is angularly misalignable relative to the housing and is manufactured from a 440C stainless steel. A dry lubricant is applied to the spherical exterior surface of the truncated ball.
A maintenance-free bearing system having self-lubricating features, seals, grooves and slots for use in a cushion hitch assembly for a hitch pull scraper vehicle. An interconnected bearing linkage system having two or more horizontal two-axis combined journal and thrust bearings with self-lubricating liners therein, two or more vertical single-axis sleeve bearings with self-lubricating liners therein and one or more vertical thrust bearing with self-lubricating liners therein, that cooperate with one another to accommodate vertical and horizontal angular movement relative to one another. The vertical thrust bearings incorporate an outer seal assembly and/or an inner seal assembly with a tapered configuration that improves retention of the seal assembly during rotation.
F16J 15/36 - Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member connected by a diaphragm to the other member
F16C 17/04 - Sliding-contact bearings for exclusively rotary movement for axial load only
F16J 15/3212 - Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip provided with tension elements, e.g. elastic rings with metal springs
A joint bushing that accommodates the dithering and sliding in multi segment wind turbines. The joint bushing includes a self-lubricating liner that is a composite system incorporating woven Polytetrafluoroethylene fibers intermixed with structural reinforcement fibers in a composite matrix. The composite system provides sufficient life without requiring re-lubrication.
A spherical bearing for a damper system includes a first segment and a second segment with a ball therebetween. The ball includes a shaft extending therefrom. The shaft extends out of the first segment. A lubricious liner is disposed between the first segment and the second segment.
A spherical bearing for a damper system includes a first segment and a second segment with a ball therebetween. The ball includes a shaft extending therefrom. The shaft extends out of the first segment. A lubricious liner is disposed between the first segment and the second segment.
E04B 1/98 - Protection against other undesired influences or dangers against vibrations or shocksProtection against other undesired influences or dangers against mechanical destruction, e.g. by air-raids
E04H 9/14 - Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
F16C 11/06 - Ball-jointsOther joints having more than one degree of angular freedom, i.e. universal joints
A tube connection system for an engine or aircraft includes a Coanda ring defining an annular tube segment which has a branch tube segment extending therefrom. A supply tube assembly defines a plurality of tube segments. Adjacent tube segments are moveably coupled to one another by one of a plurality of variable-positionable couplings. Another of the plurality of tube segments is moveably coupled to the branch segment by another of the plurality of variable-positionable couplings.
F16L 27/02 - Universal joints, i.e. with mechanical connection allowing angular movement or adjustment of the axes of the parts in any direction
B64D 29/06 - Attaching of nacelles, fairings, or cowlings
F16L 51/00 - Expansion-compensation arrangements for pipe-lines
F16L 21/02 - Joints with sleeve or socket with elastic sealing rings between pipe and sleeve or between pipe and socket, e.g. with rolling or other prefabricated profiled rings
B64C 29/00 - Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
34.
Roller bearing assembly for use in a fracking pump crank shaft
A roller bearing assembly for use in a fracking pump crank shaft includes an inner ring being positioned an outer ring and a plurality of rolling elements disposed therebetween. Each of the rolling elements have a bore extending therein. The roller bearing assembly includes a cage having an annular disc with pins extending axially inward therefrom and into the bore. The pins are positioned on the annular disc so that the rolling elements are spaced apart from one another with a gap extending continuously therebetween. The gap is of a predetermined magnitude to maximize the number of rolling elements that fit between the inner ring and the outer ring to maximize load carrying capacity of the roller bearing assembly.
F16C 19/26 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
An expandable sleeve for an interference fastener has a hollow elongate stem extending axially between an insertion end and a head portion. The elongate stem has an inside surface and an outside surface. A portion of the stem has a fluted shape and/or has a cylindrical shape with a conical portion.
A rod end includes a shaft and a head extending from the shaft. The head has an opening extending therethrough. The rod end includes a spherical bearing rotatably disposed in the opening. The spherical bearing is manufactured from an austenitic stainless steel alloy that includes 16 to 17 weight percent chromium and 0.1 to 0.18 weight percent nitrogen.
A tapered roller bearing assembly includes a one-piece inner ring that has two outer raceways oriented at angles relative to a longitudinal axis and a first outer ring with a first inner raceway and a second outer ring having a second inner raceway. The bearing assembly includes a spacer ring that has an axial width and is positioned around the inner ring and between the first and outer rings. A plurality of rolling elements is in rolling engagement with the first outer raceway and the first inner raceway. A plurality of rolling elements is in rolling engagement with the second outer raceway and the second inner raceway. The axial width is selectively established to obtain a predetermined axial clearance between the inner ring and the first outer ring and the second outer ring.
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
F16C 33/36 - RollersNeedles with bearing-surfaces other than cylindrical, e.g. taperedRollersNeedles with grooves in the bearing surfaces
F16C 19/38 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
F16C 33/66 - Special parts or details in view of lubrication
A sleeve for a valve assembly has an inside surface having an interior area and a first cylindrical section extending from a first axial end and a second cylindrical section located between the first cylindrical section and second axial end. A conical interior seating surface extends between the first and second cylindrical sections. The conical interior seating surface is metallic. The sleeve includes a groove that extends circumferentially around and radially outward in the first cylindrical section. The groove extends axially away from the conical interior seating surface towards the first axial end. The sleeve has one or more ports extending radially through the first cylindrical section proximate the groove and are spaced apart from the groove by a lip formed by the first cylindrical section. The lip extends a predetermined axial distance between the groove and the port. The lip extends around the first cylindrical section and radially inward.
F16K 3/26 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members with fluid passages in the valve member
F16K 5/02 - Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having conical surfacesPackings therefor
F16L 15/00 - Screw-threaded jointsForms of screw-threads for such joints
F16K 11/02 - Multiple-way valves, e.g. mixing valvesPipe fittings incorporating such valvesArrangement of valves and flow lines specially adapted for mixing fluid with all movable sealing faces moving as one unit
F16K 3/24 - Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with sealing faces shaped as surfaces of solids of revolution with cylindrical valve members
A bearing system for a rotating vertical shaft includes a first ball bearing, having a first pitch diameter and a first axial stiffness and a second ball bearing having a second pitch diameter and a second axial stiffness. The first ball bearing is a deep groove Conrad bearing. The second ball bearing is an angular contact bearing. The first and second ball bearings are coaxial, secured to one another and rotatable together. The first pitch diameter is at least 1.5 times greater than the second pitch diameter. The bearing system has an axial stiffness ratio defined by the first axial stiffness divided by the second axial stiffness. The axial stiffness ratio is based on an axial preload force applied to the second outer ring such that an operating torque of the bearing system is within a predetermined range at temperatures from minus 40 to positive 85 degrees Celsius.
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
F16C 33/78 - Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
F16C 19/54 - Systems consisting of a plurality of bearings with rolling friction
H02K 5/173 - Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
F16C 13/00 - Rolls, drums, discs, or the likeBearings or mountings therefor
40.
Self lubricating titanium aluminide composite material
6, or combinations thereof. Components composed of the composite material exhibit increased ductility at room temperature and reduced fracture tendency, resulting in improved durability.
C22C 30/00 - Alloys containing less than 50% by weight of each constituent
F16C 19/04 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
C22C 32/00 - Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
A roller assembly includes two outer rings rotatably mounted on a shaft by a respective set of rollers positioned between the shaft and each of the respective one of the outer rings. The shaft has a head flange on one end thereof and a groove formed therein at a distance from the head flange. A retainer ring is positioned in the groove and another retainer ring is secured to the shaft at a distance from the groove. The retaining ring is configured to space the two outer rings apart from one another so that the two outer rings are operable and rotatable independent from one another.
F16C 19/54 - Systems consisting of a plurality of bearings with rolling friction
F16C 19/28 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
A roller hydraulic valve lifter includes a body having a longitudinal central axis and an interior area defined by an inside surface which has a pair of flat surfaces opposite one another and connected by a pair of walls. A first bore, essentially perpendicular to the longitudinal axis, extends through the flat surfaces. A bearing is disposed partially in the interior area. The bearing includes an outer ring having substantially cylindrical exterior and interior bearing surfaces. A shaft extends through the first bore and the outer ring and between the pair of flat surfaces. A plurality of needle rollers is disposed between and rollingly engage the shaft and the cylindrical inner bearing surface. The shaft and the plurality of needle rollers are manufactured from an AISI 52100 alloy steel that is carbo-nitrided. The shaft and the plurality of needle rollers have a surface hardness of a minimum of HRc 65.
F16C 19/26 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
A bearing and seal arrangement for joints in heavy duty vehicles includes two spherical bearing each having an outer ring surrounding an inner member with lubricious liner disposed therebetween. One of the spherical bearings has a seal receiving area having an axially extending width that is greater than that of the other spherical bearing. The spherical bearings are aligned coaxially with one another. One seal receiving areas has a flexible double lipped annular seal and a scraper seal positioned therein. The scraper seal is positioned axially outward from the flexible double lipped annular seal. The other seal receiving area has a boot seal positioned therein.
A cam follower assembly includes a ball bearing having an outer ring and an inner assembly which includes two or more segments. The inner assembly is disposed in the outer ring with a full complement of balls disposed therebetween. The outer ring and inner assembly each include a race having a gothic arch cross sectional configuration that causes the balls to roll on two portions of each race.
F16C 19/16 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
A seal assembly for a bearing includes an inner seal member that has an annular ring with a first lobe extending therefrom and a seal receiving surface on a leg extending axially from the annular ring. The seal receiving surface has two seating areas. The seal assembly includes an outer seal member positioned radially inward from the leg and axially outward from the annular ring. The outer seal member has a pivot member which has a second lobe extending outwardly therefrom. The seal assembly includes a retaining ring that has a circumferential groove formed therein. The pivot member is pivotally seated in the groove so that the second lobe is moveable between the two first seating areas.
F16C 19/16 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
F16C 19/06 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row of balls
A roller assembly includes an outer ring having an interior having an inner surface extending an overall axial length between first and a second axial ends. The inner surface has a radially inward facing bearing surface extending between first and second radially inwardly extending flanges. The roller assembly includes a one piece inner member extending into the interior and having a groove formed therein between third and a fourth axial ends. A retaining ring is positioned in the groove. A first row of first rollers is positioned in the interior and between the retaining ring and the first radially extending flange. A second row of second rollers is positioned in the interior between the retaining ring and the second radially extending flange. An annular seal engages the inner member and has an overall axial width no more than 6% of the length of the outer ring.
F16C 19/28 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
F16C 33/78 - Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
F16C 13/00 - Rolls, drums, discs, or the likeBearings or mountings therefor
A flexible double lipped annular seal includes an anchor segment at a radially outermost portion thereof and having a pocket formed therein. The annular seal includes a branch segment extending axially outward and radially inward from the first leg at an angle. A first lip seal and a second lip seal extend radially inward from the branch segment and have a gap therebetween. The branch segment terminates in a stub segment. The annular seal includes a metallic shield secured to the annular seal and a portion of which seats in the pocket.
A maintenance-free bearing system having self-lubricating features, seals, grooves and slots for use in a cushion hitch assembly for a hitch pull scraper vehicle. An interconnected bearing linkage system having two or more horizontal two-axis combined journal and thrust bearings with self-lubricating liners therein, two or more vertical single-axis sleeve bearings with self-lubricating liners therein and one or more vertical thrust bearing with self-lubricating liners therein, that cooperate with one another to accommodate vertical and horizontal angular movement relative to one another.
A yoke roller assembly includes an inner ring disposed in an outer ring. The yoke roller assembly includes first, second and third rows of rollers positioned between the inner ring and the outer ring. The outer ring has a first width, a first outside diameter and a radially outwardly extending lobe circumferentially extending therearound and formed integrally therewith. The lobe has opposing axial end faces extending a second width, and has a second outside diameter. The second row of rollers are positioned axially inward of the axial end faces of the lobe. The first and third row of rollers each have an axial end positioned axially inward of the axial end faces of the lobe.
F16C 19/28 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
A bearing for a hinge in a hinged raked aircraft wing tip includes an outer member that has a concave inner surface and an inner member that has first and second inner segments. Each of the first and second inner segments has a base that has a bearing section extending therefrom. The bearing sections together form a convex outer surface that is complementary in shape to the concave inner surface. A preload feature is positioned between and engages a portion of the bearing sections. A lubricous liner is positioned between the concave inner surface and the convex outer surface. The bearing sections are positioned in the outer member to compress the preload feature to limit axial movement between the outer and inner members to a predetermined magnitude. The preload feature flexes outward as a result of wear to the liner to maintain the axial movement to the predetermined magnitude.
A spheroidal joint for a tuned mass damper system includes a base having a concave seat and a lubricious liner secured thereto. The base defines a first mounting portion under the concave seat and a circumferential rim opposite the first mounting portion. The concave seat tapers radially outward to define a chamfer which terminates at a radially inner edge of the rim. The spheroidal joint includes an inner member that has a convex seat. The inner member has a second mounting portion extending from the convex seat and an indentation circumferentially extending around the inner member between the convex seat and the second mounting portion. The indentation cooperates with the chamfer for misalignment of the inner member relative to the base. The convex seat slidingly engages the lubricious liner.
F16C 11/06 - Ball-jointsOther joints having more than one degree of angular freedom, i.e. universal joints
F16F 7/104 - Vibration-dampersShock-absorbers using inertia effect the inertia member being resiliently mounted
E04H 9/02 - Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
E04B 1/98 - Protection against other undesired influences or dangers against vibrations or shocksProtection against other undesired influences or dangers against mechanical destruction, e.g. by air-raids
52.
Railway truck having a self-lubricating composite bearing pad disposed therein
A railway truck assembly includes a self-lubricating pad disposed therein. The self-lubricating bearing pad includes a first layer. The first layer includes a plurality of self-lubricating fibers inter-woven with a plurality of support fibers. The self-lubricating bearing pad includes a plurality of fiber layers. Each of the plurality of fiber layers includes a plurality of support fibers. The self-lubricating bearing pad includes one or more matrix layers communicating with one or more of the plurality of fiber layers. One or more of the matrix layers are infused into one or more of the plurality of fiber layers.
An edge flap arrangement for an aircraft wing includes a main flap element and an actuator for moving the main flap element relative to the aircraft wing. A linkage arrangement supports the main flap element and includes a drop hinge link arrangement having a fixed strut secured to the aircraft wing and a drop link secured to the main flap element. The fixed strut and the drop link are connected by a hinge point having an hourglass bearing assembly having hourglass shaped rollers with a circular cross section symmetrical about a longitudinal axis, first and second axial ends, and an exterior surface. The exterior surface defines a concave engagement surface having a first radius of curvature R1 and a second radius of curvature which is greater than the first radius of curvature R1. The first radius of curvature is between 50 and 95 percent of the second radius of curvature.
F16C 33/36 - RollersNeedles with bearing-surfaces other than cylindrical, e.g. taperedRollersNeedles with grooves in the bearing surfaces
B64C 9/16 - Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
F16C 23/08 - Ball or roller bearings self-adjusting
B64C 9/18 - Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing by single flaps
B64C 13/28 - Transmitting means without power amplification or where power amplification is irrelevant mechanical
F16C 19/38 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
F16C 11/06 - Ball-jointsOther joints having more than one degree of angular freedom, i.e. universal joints
54.
Rotation rod assembly with self lubricating liner or grooved bushings
A rotation rod assembly includes a first linkage rod having a first bore extending therein. The rotation rod assembly includes a second linkage rod having a piston section extending axially therefrom, the piston section is disposed for rotation in the first bore. The piston section is axially restrained in the bore. The piston section has a self-lubricating liner secured to at least one outer surface thereof. The self-lubricating liner is in sliding engagement with portions of the bore. The liner is secured to the radially and/or axially outer surfaces of the piston section and has at least one groove therein for collection of wear materials and debris.
B64C 1/14 - WindowsDoorsHatch covers or access panelsSurrounding frame structuresCanopiesWindscreens
B64C 25/16 - Fairings movable in conjunction with undercarriage elements
F16F 9/32 - Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium Details
F16C 17/24 - Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired conditions, e.g. for preventing overheating, for safety
A roller for a mechanical fuel pump assembly includes an elongate body extending from a first axial end to a second axial end of the elongate body over an overall length of the elongate body. The elongate body defines an effective length that is less than the overall length. The elongate body defines a uniform circular cross section over a second length of the elongate body. The second length is 75 to 90 percent of the effective length and the second length extends between a first plane and a second plane. A first area of reduced cross section extends axially outward from the first plane to a third plane located axially inward of the first axial end; and a second area of reduced cross section extends axially outward from the second plane to a fourth plane located axially inward of the second axial end.
F02M 59/04 - Pumps specially adapted for fuel-injection and not provided for in groups of reciprocating-piston type characterised by special arrangement of cylinders with respect to piston-driving shaft, e.g. arranged parallel to that shaft
A seal for a bearing includes an annular retaining ring defining a first radially innermost portion and a first radially outer end; and a resilient ring defining a second radially innermost portion and a second radially outer end. The first radially innermost portion and the second radially innermost portion are aligned with one another and together define a securing root of the seal. The root is adapted to seat in a groove of an inner ring of the bearing. The resilient ring projects radially outward from the annular retaining ring. The resilient ring is more flexible than the annular retaining ring. The second radially outer end defines a sealing surface adapted to slidingly engage an inner bearing surface of an outer ring of the bearing. The first radially outer end of the retaining ring terminates between the first radially innermost portion and the second radially outer end of the resilient ring.
F16C 33/78 - Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
F16J 15/322 - Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip supported in a direction perpendicular to the surfaces
F16C 23/08 - Ball or roller bearings self-adjusting
F16C 19/26 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
A seal for a spherical bearing has an annular body portion having an arcuate cross section extending between a first axial end and a second axial end. The second axial end is positioned radially outward from the first axial end. The seal includes retaining ring positioned proximate the second end. The seal includes a scraper seal extending radially inward from the second end.
F16J 15/3204 - Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
F16J 15/3276 - Mounting of sealing rings with additional static sealing between the sealing, or its casing or support, and the surface on which it is mounted
F16C 11/06 - Ball-jointsOther joints having more than one degree of angular freedom, i.e. universal joints
F16C 17/10 - Sliding-contact bearings for exclusively rotary movement for both radial and axial load
F16C 23/08 - Ball or roller bearings self-adjusting
58.
Cam follower with tire having axial movement compensating features
A bearing assembly for a cam follower assembly for a ram assembly for a metal can production necker includes two or more bearings. Each of the bearing includes an inner ring positioned within an outer ring and a plurality of rolling elements positioned therebetween. The bearing assembly includes a tire press fit on the outer rings of the bearings. The tire has an elongate body portion that extends between a first radially inward projecting shoulder and a second radially inward projecting shoulder. A radially inward facing surface extends between the first radially inward projecting shoulder and the second radially inward projecting shoulder. The first radially inward projecting shoulder extends further radially inward than the second radially inward projecting shoulder.
F16C 19/06 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row of balls
F16C 19/28 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with two or more rows of rollers
A cam follower assembly includes a shaft having a body defining a flanged head having an outer bearing surface extending therefrom. An outer ring is positioned around the shaft thereby forming an annular space there between. A plurality of rollers is positioned in the annular space. A channel extends through the shaft and branches radially outward at an outlet to communicate with the annular space. A lubrication assembly is positioned in the shaft and includes a pressurizing device located upstream of a lubrication reservoir and a metering device positioned downstream of the lubrication reservoir. The lubrication reservoir is in fluid communication with the outlet. The lubrication assembly includes a membrane positioned downstream of the lubrication reservoir. A piercing device is positioned proximate the membrane to pierce the membrane and release a lubricant from the lubrication reservoir.
A track roller assembly includes a split inner ring, a split outer ring, a one piece inner ring and/or a one piece outer ring and a liner or plurality of rolling elements engaging therewith, the track roller assembly being disposed in a structure of an Airbus A-350 aircraft, an Airbus A-320 aircraft, an Airbus A320Neo aircraft, an Airbus A330 aircraft, an Airbus A330Neo aircraft, an Airbus A321 aircraft, an Airbus A340 aircraft, and an Airbus A380 aircraft.
A ball bearing includes an outer ring having at two outer raceways and an inner ring having two inner raceways. A plurality of balls is disposed in each of the two inner and outer raceways. The plurality of balls include load bearing balls and spacer balls. The spacer balls are disposed between the load bearing balls. Each of the load bearing balls has a single point of contact with each of the two inner and outer raceways. The load bearing balls are preloaded between the outer ring and the inner ring at predetermined force.
F16C 19/20 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
A system for isolating electrical current in an aircraft structure includes a first structure a bearing having an outer race and an inner race and a liner disposed therebetween, the outer race having a second structure coupled thereto. A dielectric seal is secured to the outer race and engages the inner race. A conditionally non-conductive gas occupies a sealed chamber that defines a gap between the inner race and the outer race. The gap has a predetermined magnitude sufficient to prevent electrical arcing or current leakage between the inner race and the outer race at a first voltage less than that voltage resulting from a lightning strike; and/or to conduct an electrical current between the inner race and the outer race at a second voltage greater than or equal to the voltage resulting from the lightning strike.
F16C 17/24 - Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with devices affected by abnormal or undesired conditions, e.g. for preventing overheating, for safety
A guide mechanism, configured for use with a guided attack rocket, includes an inner housing partially disposed in an outer housing. The inner and outer housings each define a forward end and an aft end. A first angular contact bearing is positioned between the outer housing forward end and the inner housing forward end. A second angular contact bearing is positioned between the outer housing aft end and the inner housing aft end. A retaining nut is received over the inner housing forward end. The retaining nut preloads the first and second angular contact bearings. Each of the angular contact bearings includes an inner member disposed within an outer member. The outer member defines an outer raceway and the inner member defines an inner raceway. A plurality of rolling elements is disposed between the outer raceway and the inner raceway.
F42B 15/01 - Arrangements thereon for guidance or control
F42B 15/36 - Means for interconnecting rocket-motor and body sectionMulti-stage connectorsDisconnecting means
F16C 19/16 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
64.
Bearing assembly having surface protrusions and a seal
A bearing assembly has an outer race, which has an arcuate inner surface and an inner member that is partially disposed in the outer member and which has an arcuate outer surface. The inner member has one or more hubs that extend axially from the inner member. The one or more hubs each have one or more circumferentially extending surface depression that is positioned proximate the arcuate outer surface. The one or more hubs each have one or more circumferentially extending surface protrusion that is positioned axially outward beyond the at least one circumferentially extending surface depression.
A cage for an hourglass roller bearing includes an annular ring having a first axial face and a second axial face. A plurality of first rails extend from the first axial face and a plurality of second rails extend from the second axial face. The cage includes a plurality of pockets. Each of the plurality of pockets is defined by opposing circumferentially facing walls of at least one of adjacent pairs of the first rails and adjacent pairs of the second rails. The circumferentially facing walls are arcuately formed so that each of the plurality of pockets is cylindrical.
F16C 19/38 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
B64C 9/16 - Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
An edge flap arrangement for an aircraft wing includes a main flap element and an actuator. A linkage arrangement supports the main flap. The linkage arrangement includes a drop hinge link arrangement. The drop hinge link arrangement includes a fixed strut and a drop link. The fixed strut and the drop link are pivotally connected by a hinge point. The hinge point includes an hourglass bearing. The hourglass bearing includes an inner member, an outer member, and a plurality of hourglass rollers. Any combination of the inner member, the outer member, and the hourglass rollers are fabricated from CREN, Cronidur 30, XD15NW, 422 Stainless Steel, CRES, and/or 440C Stainless Steel. A cage is disposed between the inner member and the outer member. The cage includes a plurality of first rails and a plurality of second rails. Opposing pairs of first rails and second rails define a plurality of pockets.
A bearing assembly includes an outer race having an inner surface defining a concave contour and an inner race positioned in the outer race. The inner race has an inner surface defining a bore therethrough and an outer surface defining at least one groove circumscribing the outer surface. A plurality of rolling elements is rollably located in the groove and is in rolling contact with the inner surface of the outer race. A lubricious liner has an inner liner-surface and an exterior liner-surface, the exterior liner-surface being disposed on the inner surface defining the bore. The lubricious liner has a modulus of compression of a magnitude sufficient to allow misalignment of the inner liner-surface relative to the exterior liner-surface in response to a force applied thereto.
F16C 19/06 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row of balls
B64C 9/16 - Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
F16C 19/26 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
68.
Bearing assembly with split outer ring having interference fit tabs and method of assembly of bearing
A bearing includes a split outer race having a first outer race member and a second outer race member that form an annular ring. The bearing includes an activation member that is rotatable from a first position to a second position and is at least partially disposed in the annular ring. A locking feature is defined by the first outer race member, the second outer race member and the activation member. The locking feature has an unlocked position and a locked position. The unlocked position corresponds to the first position of the activation member and the locked position corresponds to the second position of the activation member.
F16C 41/04 - Preventing damage to bearings during storage or transport thereof or when otherwise out of use
F16C 17/22 - Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with arrangements compensating for thermal expansion
F16C 11/06 - Ball-jointsOther joints having more than one degree of angular freedom, i.e. universal joints
F16C 17/02 - Sliding-contact bearings for exclusively rotary movement for radial load only
A compression rod has a buckling initiating feature. The compression rod includes an elongate body. The elongate body has a first cross sectional area along a first a length of the elongate body and a second cross sectional area along a second length of the elongate body. The second cross sectional area defines the buckling initiating feature. The second cross sectional area is configured to cause buckling along the elongate body upon application of a predetermined axially oriented compressive force.
F16C 7/02 - Constructions of connecting-rods with constant length
B64C 13/30 - Transmitting means without power amplification or where power amplification is irrelevant mechanical using cable, chain, or rod mechanisms
In one aspect, the present invention resides in an edge flap arrangement for an aircraft wing that has a main flap element and an actuator for moving the main flap element relative to the wing, a linkage arrangement that supports the main flap element from the aircraft wing for movement relative to the wing, the linkage arrangement including a drop link and a hinge point. The fixed strut and the drop link are pivotally connected by the hinge point. The hinge point includes a bearing. The bearing is an hourglass bearing assembly that has an inner raceway outer raceway. The outer raceway is positioned around the inner raceway. A plurality of rollers is disposed between the inner raceway and the outer raceway. The plurality of rollers, the outer raceway and/or the inner raceway are manufactured from CREN and/or CRES.
A rod end is provided for an actuator for a turbocharger high temperature wastegate. The rod end includes a stem configured to fixedly engage an actuator rod, a socket secured to the stem, and a spherical bearing disposed within the socket. The bearing includes an outer member and an inner member disposed at least partially within the outer member. The inner member is misalignable and rotatable in relation to the outer member. An area of engagement is defined by an interface of an inner engagement surface of the outer member and an outer engagement surface of the inner member. The spherical bearing is configured to withstand temperatures in excess of 260° C. (500° F.).
A spherical bearing includes a split outer ring having a spherical radially inner facing surface, an axially outward facing shoulder and a radially outward extending first groove formed therein. A first snap ring is snap fit in the first groove. The spherical bearing includes an inner race defining a spherical exterior surface and having a radially inward extending second groove. A second snap ring is snap fit into the second groove. A seal extends between the outer ring and the inner race and includes a retaining ring secured to a second end of the seal. A first end of the seal defines a lip extending radially inward. The lip is seated against the second snap ring. The retaining ring is positioned between the first snap ring and the axially outward facing shoulder. The seal is axially compressed between the axially outward facing shoulder and the second snap ring.
F16J 15/52 - Sealings between relatively-movable members, by means of a sealing without relatively-moving surfaces, e.g. fluid-tight sealings for transmitting motion through a wall by means of sealing bellows or diaphragms
A swaged bearing assembly includes a flange mounted thereon. A bearing inner member has an outer surface at least a portion of which defines an outer engagement surface. A bearing outer member is swaged around the inner member and the inner member is misalignable and rotatable in relation to the outer member. The outer member has an outer surface and an inner surface at least a portion of which defines an inner engagement surface. An area of engagement is defined by an interface of the inner engagement surface of the outer member and the outer engagement surface of the inner member. A flange is mounted on the outer surface of the outer member.
A cage for a roller bearing includes a first annular portion and a second annular portion opposite the first annular portion and a plurality of pillars interconnecting the first annular portion and the second annular portion. Adjacent pairs of the pillars each define a pocket for holding rollers. Each of the pockets is configured to receive at least one roller. One or more radially outward facing concave roller support surface is formed in one or more of the pillars at a position proximate a radially outer edge of the pillar. The concave roller support surface is configured to radially outwardly support a portion of one of the rollers.
A bearing (10) includes an outer member (12) having a base portion (14) and a first concave surface (16). The base portion (14) has a first convex surface (20) extending from a second axial end (22) thereof. The base portion (14) and the first concave surface (16) cooperate to define a cavity (24) in the outer member (12). The base portion (14) has a first aperture (26) extending therethrough. The bearing includes an inner member (28) having a second convex surface (30) and is positioned partially in the cavity (24) such that the second convex surface (30) slidingly engages the first concave surface (16). The inner member (28) has a second aperture (27) extending therethrough. The bearing includes an anchor member (34) defined by a shaft (36) and a head (38) extending radially outward from the shaft (36). A portion of the shaft (36) extends through the first aperture (26) and is removably secured in the second aperture (27). The head (38) has a second concave surface (40) that slidingly engages the first convex surface (20).
F16C 11/06 - Ball-jointsOther joints having more than one degree of angular freedom, i.e. universal joints
B61G 5/02 - Couplings not otherwise provided for for coupling articulated trains, locomotives and tenders, or the bogies of a vehicleCoupling by means of a single coupling barCouplings preventing or limiting relative lateral movement of vehicles
Top drive bearing for use in a top drive system, and made of non-vacuum arc remelted steel configured to achieve an extended life cycle at least equivalent to a life factor of three for a vacuum arc remelted steel
A top drive thrust bearing configured for use in a heavy loaded top drive system. The top drive thrust bearing includes an upper plate; a lower plate; and a plurality of rollers disposed between the upper plate and the lower plate. The composition of the top drive thrust bearing comprising a non-vacuum arc remelted steel including, in weight percent (%), about 0.15% to about 0.18% carbon (C), about 0.15% to about 0.4% silicon (Si), about 0.4% to about 0.7% manganese (Mn), 0% to about 0.025% phosphorus (P), about 0.0005% to about 0.002% sulfur (S), about 0.0002% to about 0.0007% oxygen (O), about 0.001% to about 0.003% titanium (Ti), about 1.3% to about 1.6% chromium (Cr), about 3.25% to about 3.75% nickel (Ni), about 0.0005% to about 0.003% calcium (Ca), about 0.15% to about 0.25% molybdenum (Mo), balance iron (Fe).
F16C 33/36 - RollersNeedles with bearing-surfaces other than cylindrical, e.g. taperedRollersNeedles with grooves in the bearing surfaces
F16C 19/30 - Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for axial load mainly
77.
DOUBLE ROW PRELOADED BALL BEARING WITH SPACER BALLS
A ball bearing includes an outer ring (50) having two outer raceways and an inner ring (52) having two inner raceways. A plurality of balls is disposed in each of the two inner and outer raceways. The plurality of balls include load bearing balls (64) and spacer balls (66). The spacer balls (66) are disposed between the load bearing balls (64). Each of the load bearing balls (64) has a single point of contact with each of the two inner and outer raceways. The load bearing balls (64) are preloaded between the outer ring (50) and the inner ring (52) at predetermined force.
F16C 19/18 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
F16C 19/20 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
A duplex bearing is configured for use with a nuclear reactor control rod drive mechanism. The duplex includes an outer member and an inner member wherein each defines an interior surface and an exterior surface. The outer member interior surface defines a first and second outer raceway; and the inner member defines a first and second inner raceway. A first plurality of load-carrying rolling elements and a first plurality of spacer rolling elements are disposed in a first annular cavity defined between the first inner raceway and first outer raceway. A second plurality of load-carrying rolling elements and a second plurality of spacer rolling elements are disposed in a second annular cavity defined between the second inner raceway and the second outer raceway. The duplex bearing is configured to operate with sealed de-ionized water exhibiting a temperature in the range of up to about 1200° F. as a sole lubricant.
F16C 19/20 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
F16C 19/08 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with two or more rows of balls
F16C 25/08 - Ball or roller bearings self-adjusting
A link apparatus includes a tubular member that retains 90% of ultimate tensile strength at a temperature of up to 329.44° Celsius (625° Fahrenheit). Two conical adapters are joined to ends of the tubular member. One threaded shank of a rod end is threaded into a right hand threaded base of one conical adapter, and a threaded shank of another rod end is threaded into a left hand threaded base of the other conical adapter. Each rod end has a bearing assembly disposed therein including an outer race, a ball disposed therein, and a low-friction liner disposed between the outer race and ball for mitigating moment loading on the tubular member. The cross-sectional area of the tubular member is at least as great as the cross sectional area of the rod ends. The tubular member is tensionable by rotation relative to the rod ends.
A roller assembly for a diesel engine used in a high mileage vehicle includes a roller having an exterior roller surface and an interior surface that defines a bore extending therethrough. A pin is positioned in the bore and defines an exterior pin surface. A plurality of rolling elements is positioned between the exterior pin surface and the roller interior surface. Each of the rolling elements rollingly engages the exterior pin surface and the roller interior surface. The roller assembly defines a clearance of between about 0.01 mm to about 0.03 mm between the rolling elements, the exterior pin surface and the interior surface. The roller assembly is configured to achieve extended life criteria wherein the clearance does not increase to more than 0.02 mm to 0.06 mm after 500,000 miles of travel of a vehicle powered by a diesel engine having the roller assembly installed therein.
A roller assembly for a diesel engine used in a high mileage vehicle includes a roller having an exterior roller surface and an interior surface that defines a bore extending therethrough. A pin is positioned in the bore and defines an exterior pin surface. A plurality of rolling elements is positioned between the exterior pin surface and the roller interior surface. Each of the rolling elements rollingly engages the exterior pin surface and the roller interior surface. The roller assembly defines a clearance of between about 0.01 mm to about 0.03 mm between the rolling elements, the exterior pin surface and the interior surface. The roller assembly is configured to achieve extended life criteria wherein the clearance does not increase to more than 0.02 mm to 0.06 mm after 500,000 miles of travel of a vehicle powered by a diesel engine having the roller assembly installed therein.
A high-cycle, short range-of-motion linkage apparatus is provided for actuating a positioning device. The linkage apparatus includes a pivot member (26) having a head portion configured to receive by plastic deformation a bearing assembly (10) therein. The head portion defines a bore therein having a substantially cylindrical inner surface that defines an inner diameter having a first center point (XI). A stem (30) having a central axis extends from the pivot member along the central axis in a first direction. The head portion further defines a truncated arcuate (427A-427D) outer surface (427), a portion of which defines a radius of curvature (R1-R3) and a second center point (X2). The second center point is offset from the first center point in the first direction and a distance D3 between the first center point and the second center point, measured along the central axis, is in the range of up to about 33% of the radius of curvature (R1-R3).
A seal for a bearing includes a first annular retaining ring (72) defining a first radially outermost portion (72X) and a second annular retaining ring (74) defining a second radially outermost portion (74X). The seal includes a resilient ring (76) defining a third radially outermost portion (76X). The resilient ring is disposed between the first annular retaining ring and the second annular retaining ring. The first radially outermost portion, the second radially outermost portion and the third radially outermost portion are aligned with one another. The resilient ring projects radially inward from the first annular retaining ring and the second annular retaining ring. The resilient ring is more compressible and flexible than the first annular retaining ring and the second annular retaining ring.
A cage for a roller bearing includes a first annular portion and a second annular portion opposite the first annular portion and a plurality of pillars interconnecting the first annular portion and the second annular portion. Adjacent pairs of the pillars each define a pocket for holding rollers. Each of the pockets is configured to receive at least one roller. One or more radially outward facing concave roller support surface is formed in one or more of the pillars at a position proximate a radially outer edge of the pillar. The concave roller support surface is configured to radially outwardly support a portion of one of the rollers.
F16C 19/46 - Needle bearings with one row of needles
F16C 19/48 - Needle bearings with two or more rows of needles
F16C 19/14 - Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
85.
ACTUATION SYSTEM FOR A LIFT ASSISTING DEVICE AND LINED TRACK ROLLERS USED THEREIN
An actuation system for deploying and retracting a lift assisting device of a leading edge of a wing of an aircraft including a track pivotally coupled to the lift assisting device. The track has first and second outer surfaces and side surfaces. The actuation system includes a shaft rotationally coupled within the wing of the aircraft and operable, in response to flight control signals, to deploy or retract the lift assisting device. The actuation system includes an actuator for actuating the lift assisting device, coupled to the shaft, between a retracted position to a deployed position along an arcuate path. The actuation system includes a plurality of track roller bearings rotatably contacting the first and second outer surfaces of the track to guide the track along the arcuate path. The plurality of track roller bearings includes one or more lined track roller assembly.
A bearing assembly includes an inner member having an outer engagement surface and an outer race. The outer race has an inner surface defining a first end and a second end and an inner engagement surface therebetween, the inner engagement surface is positioned on the outer engagement surface of the inner member. A first annular groove is formed in the inner surface, proximate one of the first end and the second end. A second annular groove is formed in the inner surface and is positioned axially inward from the first annular groove. An external seal is positioned in first annular groove and slidably engages the inner member. An internal seal is positioned in the second annular groove and slidingly engages the inner member.
A spherical bearing has an outer ring with a concave bearing surface and an inner ring having a convex bearing surface, which is in sliding engagement with the concave bearing surface. A lubrication groove is formed in the convex bearing surface and/or the concave bearing surface. The lubrication groove is defined by a concave central portion and by convex side portions. The concave central portion has a first radius of curvature and the convex side portions have a second radius of curvature. The second radius of curvature is at least 0.7 times the first radius of curvature.
A self-aligning track roller bearing includes an inner member having a central axis and a convex surface and an outer member has a concave surface and is angularly displaceable relative to the central axis. A lubricious liner is positioned between the convex surface and the concave surface. The lubricious liner creates a force resisting movement of the inner member relative to the outer member. The bearing includes a snubber engaging an axially facing surface of the outer member and another snubber engaging another axially facing surface of the outer member. Outer rings are coupled to opposing axially facing surfaces of the inner member to retain the snubbers in engagement therewith. One or more of the snubbers are elastically deformable in response to angular displacement of the outer member and have a resilience set to overcome the force and urge the outer member to be concentric with the central axis.
An actuation system for deploying and retracting a lift assisting device of a leading edge of a wing of an aircraft including a track pivotally coupled to the lift assisting device. The track has first and second outer surfaces and side surfaces. The actuation system includes a shaft rotationally coupled within the wing of the aircraft and operable, in response to flight control signals, to deploy or retract the lift assisting device. The actuation system includes an actuator for actuating the lift assisting device, coupled to the shaft, between a retracted position to a deployed position along an arcuate path. The actuation system includes a plurality of track roller bearings rotatably contacting the first and second outer surfaces of the track to guide the track along the arcuate path. The plurality of track roller bearings includes one or more lined track roller assembly.
A steering axle assembly includes a wheel end having a knuckle section comprising a first arm and a second arm each extending therefrom. The steering axle assembly includes an axle beam having a connecting end. A pin is disposed in respective bores of the first and second arms and of the connecting end. The steering axle assembly includes a self-lubricated bearing system that including a first tubular bushing, a second tubular busing and an annular thrust bearing. The self-lubricated bearing system has an adequate amount of lubricant therein at a beginning of life state and the amount of the lubricant being sufficient for an end of life state defined by at least one million miles of operation of the heavy duty truck, without replenishment of the lubricant.
A bearing assembly includes an outer race having an inner surface defining a concave contour and an inner race positioned in the outer race. The inner race has an inner surface defining a bore therethrough and an outer surface defining at least one groove circumscribing the outer surface. A plurality of rolling elements is rollably located in the groove and is in rolling contact with the inner surface of the outer race. A lubricious liner has an inner liner-surface and an exterior liner-surface, the exterior liner-surface being disposed on the inner surface defining the bore. The lubricious liner has a modulus of compression of a magnitude sufficient to allow misalignment of the inner liner-surface relative to the exterior liner-surface in response to a force applied thereto.
A steering axle assembly (10) includes a wheel end having a knuckle section comprising(26) a first arm (30a) and a second arm (30b) each extending therefrom. The steering axle assembly includes an axle beam (12) having a connecting end (14). A pin (50) is disposed in respective bores of the first and second arms and of the connecting end. The steering axle assembly includes a self-lubricated bearing system that including a first tubular bushing (62), a second tubular busing (72) and an annular thrust bearing (80). The self-lubricated bearing system has an adequate amount of lubricant therein at a beginning of life state and the amount of the lubricant being sufficient for an end of life state defined by at least one million miles of operation of the heavy duty truck, without replenishment of the lubricant.
A sealed spherical bearing includes a ball disposed in a race, an annular seal extending between the race and the ball, and a retainer secured to the seal. A retainer first leg axially outward facing surface is secured to a seal first leg axially inward facing surface, and a retainer second leg radially inward facing surface is secured to a seal first leg radially outward facing surface. The retainer and the seal are separately formed elements. The retainer and the seal secured thereto is press-fit into a first annular groove of the race such that a first groove radially inward facing surface engages a retainer second leg radially outward facing surface, a first groove axially outward facing surface engages a retainer first leg axially inward facing surface, and the retainer is fixed relative to the race.
A spherical plain bearing (10) includes an inner ring (12) defining a convex outer surface (14) and an outer ring (16) defining a concave inner surface (18). The outer ring encircles the inner ring and one or more of the outer surface and the inner surface have a plurality of pockets (20) formed therein. A solid graphite plug (22) is disposed in one or more of the plurality of pockets and slidingly engages the outer surface and/or the inner surface.
A load slot bearing system for a mounting system for a gearbox on a geared turbofan engine includes a load slot bearing assembly having a cobalt alloy inner member and a precipitation-hardenable alloy outer member. The inner member defines an outer engagement surface and the outer member defines an inner engagement surface slidably and rotatably engaged with the inner engagement surface. One of the outer engagement surface or the inner engagement surface has boron diffused therein. The load slot bearing system includes first and second slots extending inward from a face defined by the outer member, the second slot being positioned generally diametrically opposite the first slot. A first element is located in the bore of the inner member of the load slot bearing assembly and is connected to the inner member. A second element is connected to the outer member of the load slot bearing assembly.
A load slot bearing system for a mounting system for a gearbox on a geared turbofan engine includes a load slot bearing assembly (10) having a cobalt alloy inner member (12) and a precipitation-harden- able alloy outer member (14). The inner member (12) defines an outer engagement surface (18) and the outer member (14) defines an inner engagement surface (22) slidably and rotatably engaged with the- outr engagement surface (18). One of the outer engagement surface (18) or the inner engagement surface (22) has boron diffused therein. The load slot bearing system includes first and second slots (20) extending inward from a face (21) defined by the outer member (14), the second slot being positioned generally diametrically opposite the first slot. A first element (44) is located in the bore (16) of the inner member (12) of the load slot bearing assembly (10) and is connected to the inner member (12). A second element (46) is connected to the outer member (14) of the load slot bearing assembly (10).
A high-cycle, short range-of-motion linkage apparatus (33) is provided for actuation of a positioning device. The linkage apparatus (33) includes a pivot member (26) having a stem (30)extending therefrom, a positioning member (32)including a receiving portion (31) into which the stem (30) is removably secured, and at least one spherical plain bearing (12, 14) secured to the pivot member. The spherical plain bearing has an inner member (12) having an outer engagement surface and a bore (16) extending at least partway therethrough, an outer member (14)positioned at least partially around the inner member (12), the outer member (14) having an inner engagement surface contoured to a shape complementary to the outer engagement surface of the inner member (12), and a liner disposed between the inner engagement surface of the outer member (14) and the outer engagement surface of the inner member (12), the liner comprising polytetrafluoroethylene and a phenolic resin reinforced with aramid fibers.
A spherical bearing has an outer ring with a concave bearing surface and an inner ring having a convex bearing surface, which is in sliding engagement with the concave bearing surface. A lubrication groove is formed in the convex bearing surface and/or the concave bearing surface. The lubrication groove is defined by a concave central portion and by convex side portions. The concave central portion has a first radius of curvature and the convex side portions have a second radius of curvature. The second radius of curvature is at least 0.7 times the first radius of curvature.
An end cap (12) for a bearing assembly includes a first body portion (40) having a substantially annular sealing surface (42) positioned radially away from a central axis of the first body portion (40). The end cap includes a second body portion (46) extending from the first body portion, the second body portion (46) having at least one protrusion (51) extending radially therefrom.
A cam follower (10) for a ram of a metal can necker machine and a method of making the same. An outer ring (40, 70) has an outer ring bearing surface (42, 72) and an exterior surface (44, 74) defining a groove (46, 76) extending along at least a portion thereof. An inner ring (50, 80) is coaxially in the outer ring (40, 70) and has an inner ring bearing surface (52, 82). A plurality of rolling elements (54, 84) is disposed in an annular cavity (59, 89) between the outer ring bearing surface (42, 72) and the inner ring bearing surface (52, 82). The plurality of rolling elements (54, 84) are in rolling engagement with the outer ring bearing surface (42, 72) and the inner ring bearing surface (52, 82) so that the outer ring (40, 70) is rotatable relative to the inner ring (50, 80) about an axis of rotation (A). The outer ring (40, 70) is received in a tire (100). A least a portion of the tire (100) is disposed in the groove (46, 76) to inhibit axial movement of the tire (100) relative to the outer ring (40, 70).