A battery case leak testing device includes a housing having a testing port. A pump is in fluid communication with the testing port and is configured to generate a prescribed pressure at the testing port. A pressure sensor is in fluid communication with the testing port to measure fluid pressure at the testing port. A controller is in operative communication with the pump and the pressure sensor, and is configured to facilitate operation of the pump in a first mode and a second mode. In the first mode, the pump operates to generate a first prescribed pressure at the testing port. In the second mode, the pump operates to generate a second prescribed pressure at the testing port. The controller transitions the pump from the first mode to the second mode when the pressure sensor measures a prescribed pressure characteristic when the pump is operating in the first mode.
B60L 3/00 - Electric devices on electrically-propelled vehicles for safety purposesMonitoring operating variables, e.g. speed, deceleration or energy consumption
B60L 58/10 - Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
G01R 31/385 - Arrangements for measuring battery or accumulator variables
G01M 3/32 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
2.
LEAK DETECTION SYSTEM FOR VEHICLE BATTERY ENVIRONMENT AND RELATED METHODOLOGY
A battery case leak testing device includes a housing having a testing port. A pump is in fluid communication with the testing port and is configured to generate a prescribed pressure at the testing port. A pressure sensor is in fluid communication with the testing port to measure fluid pressure at the testing port. A controller is in operative communication with the pump and the pressure sensor, and is configured to facilitate operation of the pump in a first mode and a second mode. In the first mode, the pump operates to generate a first prescribed pressure at the testing port. In the second mode, the pump operates to generate a second prescribed pressure at the testing port. The controller transitions the pump from the first mode to the second mode when the pressure sensor measures a prescribed pressure characteristic when the pump is operating in the first mode.
H01M 10/42 - Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
G01M 3/32 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
Provided is a method of testing for a leak in a fluid system. The method includes submerging at least a portion of an electrically conductive body in an electrolyte solution, with the electrically conductive body and electrolyte solution being in an internal chamber of a device. The method further includes directing an electrical signal to the electrically conductive body, causing a reaction between the electrically conductive body and the electrolyte solution to produce hydrogen. The method further includes injecting the hydrogen into the fluid system for leak detection.
C25B 9/04 - Devices for current supply; Electrode connections; Electric inter-cell connections
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
Provided is a method of testing for a leak in a fluid system. The method includes submerging at least a portion of an electrically conductive body in an electrolyte solution, with the electrically conductive body and electrolyte solution being in an internal chamber of a device. The method further includes directing an electrical signal to the electrically conductive body, causing a reaction between the electrically conductive body and the electrolyte solution to produce hydrogen. The method further includes injecting the hydrogen into the fluid system for leak detection.
G01M 3/04 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
F22B 3/02 - Other methods of steam generationSteam boilers not provided for in other groups of this subclass involving the use of working media other than water
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/40 - Investigating fluid tightness of structures by using electric means, e.g. by observing electric discharges
C25B 1/04 - Hydrogen or oxygen by electrolysis of water
C25B 9/73 - Assemblies comprising two or more cells of the filter-press type
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
G01M 3/02 - Investigating fluid tightness of structures by using fluid or vacuum
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
A universal leak detection method for detecting both small and large leaks. The method includes the steps of: injecting smoke and a detectable gas into a fluid system to pressurize the fluid system, the smoke and detectable gas both being capable of passing through a large leak in the fluid system, and the visual smoke particles being inhibited from passing through a small leak in the fluid system and the detectable gas being capable of passing through a small leak in the fluid system; and detecting a leak by detecting at least one of the smoke and the detectable gas, wherein detection of smoke is indicative of the fluid system having a large leak and detection of detectable gas without smoke.
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/22 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for valves
B05B 1/24 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means incorporating means for heating the liquid or other fluent material, e.g. electrically
G01M 3/04 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
F41H 9/06 - Apparatus for generating artificial fog or smoke screens
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
F24F 6/08 - Air-humidification by evaporation of water in the air using heated wet elements
A universal leak detection method for detecting both small and large leaks. The method includes the steps of: injecting smoke and a detectable gas into a fluid system to pressurize the fluid system, the smoke and detectable gas both being capable of passing through a large leak in the fluid system, and the visual smoke particles being inhibited from passing through a small leak in the fluid system and the detectable gas being capable of passing through a small leak in the fluid system; and detecting a leak by detecting at least one of the smoke and the detectable gas, wherein detection of smoke is indicative of the fluid system having a large leak and detection of detectable gas without smoke.
G01M 3/04 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
F24F 6/08 - Air-humidification by evaporation of water in the air using heated wet elements
B05B 1/24 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means incorporating means for heating the liquid or other fluent material, e.g. electrically
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
11.
Balloon catheter apparatus for high pressure leak detection
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
G01M 3/02 - Investigating fluid tightness of structures by using fluid or vacuum
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
12.
BALLOON CATHETER APPARATUS FOR INTERNAL COMBUSTION ENGINE COMPONENT LEAK DETECTION AND HIGH PRESSURE LEAK DETECTION
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
F16L 55/134 - Means for stopping flow in pipes or hoses by introducing into the pipe a member expandable in situ introduced axially into the pipe or hose the closure device being a plug fixed by radially deforming the packing by means of an inflatable packing
G01M 3/02 - Investigating fluid tightness of structures by using fluid or vacuum
G01M 3/04 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/26 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves
09 - Scientific and electric apparatus and instruments
Goods & Services
A leak detector accessory, namely, a tube connected to a smoke machine that delivers visible vapor from the smoke machine to areas of suspected leaks in fluid systems, namely, automobile systems, industrial machines and heating, cooling and ventilation systems
16.
BALLOON CATHETER APPARATUS FOR HIGH PRESSURE LEAK DETECTION
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
G01M 3/02 - Investigating fluid tightness of structures by using fluid or vacuum
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
18.
Leak detection system with secure sealing mechanism
An automotive leak detection system that includes means for forming a secure, leak-proof interconnection between a source of pressurized leak detection vapor and the automobile engine's air induction system ducting or hose. The system includes a sealing mechanism that is specially contoured and configured to matingly interconnect about the opening defined about the distal-most end of the air induction system ducting or hose such that the sealing device and hose form a secure, leak-proof interconnection. The sealing device may be provided with a customized periphery that is designed to correspond and matingly engage with the footprint or specific configuration of the distal end of the air induction system ducting or hose of a specific car manufacturer and/or specific make and model air induction system ducting or system.
G01M 3/22 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for valves
G01M 3/02 - Investigating fluid tightness of structures by using fluid or vacuum
There is provided a smoke generating device for use with a vaporizing material. The smoke generating device includes a housing defining an inner chamber configured to receive the vaporizing material, and a heating element disposed within the housing. A capillary is disposed within the inner chamber and is in thermal communication with the heating element. The capillary includes opposed first and second end portions, with the first end portion being disposable in the vaporizing material and the second end portion defining an opening in fluid communication with the internal chamber. The capillary is configured to convey the vaporizing material to the heating element. An inlet conduit in fluid communication with the inner chamber and fluidly connectable to a pressurized fluid source, and an outlet conduit in fluid communication with the inner chamber and configured to convey vapor from the inner chamber.
B05B 1/24 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means incorporating means for heating the liquid or other fluent material, e.g. electrically
An apparatus and method for leak detection through use of an adapter containing a chamber, an air pressurization port, and detection media instillation port. The apparatus is sealingly or relatively sealingly coupled to a turbo inlet air duct on an internal combustion engine under study, such that the apparatus chamber communicates with the engine's interior void. The apparatus permits pressurized air and detective media, such as smoke or fog, to be introduced through the chamber and into the void of an engine to determine the presence and location of engine system leaks.
There is provided an inlet adapter for use with a fluid integrity test device for testing a fluid system. The fluid system includes a primary inlet collar defining a primary collar inner periphery. The inlet adapter includes an adapter body having an adapter inlet face and an adapter contact face. The adapter contact face is disposable in contact with the primary inlet collar to form a fluid tight seal with the primary inlet collar. The adapter contact face defines a contact face periphery that is circumscribable about the primary collar inner periphery. An adapter inner wall is disposed about an adapter axis and extends between the adapter inlet face and the adapter contact face to form an adapter channel. The adapter channel is in fluid communication with the fluid system when the fluid tight seal is formed between the adapter contact face and the primary inlet collar.
09 - Scientific and electric apparatus and instruments
Goods & Services
Leak detectors for detecting leaks in fluid systems in the nature of automobile systems, industrial machines, and heating, cooling and ventilation systems
A universal leak detection method for detecting both small and large leaks. The method includes the steps of: injecting smoke and a detectable gas into a fluid system to pressurize the fluid system, the smoke and detectable gas both being capable of passing through a large leak in the fluid system, and the visual smoke particles being inhibited from passing through a small leak in the fluid system and the detectable gas being capable of passing through a small leak in the fluid system; and detecting a leak by detecting at least one of the smoke and the detectable gas, wherein detection of smoke is indicative of the fluid system having a large leak and detection of detectable gas without smoke.
B05B 1/24 - Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means incorporating means for heating the liquid or other fluent material, e.g. electrically
F24F 6/08 - Air-humidification by evaporation of water in the air using heated wet elements
G01M 3/04 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01N 27/26 - Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variablesInvestigating or analysing materials by the use of electric, electrochemical, or magnetic means by using electrolysis or electrophoresis
28.
BALLOON CATHETER APPARATUS FOR INTERNAL COMBUSTION ENGINE COMPONENT LEAK DETECTION AND HIGH PRESSURE LEAK DETECTION
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
F16L 55/134 - Means for stopping flow in pipes or hoses by introducing into the pipe a member expandable in situ introduced axially into the pipe or hose the closure device being a plug fixed by radially deforming the packing by means of an inflatable packing
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
G01M 3/22 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for valves
Provided is a method of testing for a leak in a fluid system. The method includes submerging at least a portion of an electrically conductive body in an electrolyte solution, with the electrically conductive body and electrolyte solution being in an internal chamber of a device. The method further includes directing an electrical signal to the electrically conductive body, causing a reaction between the electrically conductive body and the electrolyte solution to produce hydrogen. The method further includes injecting the hydrogen into the fluid system for leak detection.
G01M 3/20 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
There is provided a smoke generating device for use with a vaporizing material. The smoke generating device includes a housing defining an inner chamber configured to receive the vaporizing material, and a heating element disposed within the housing. A capillary is disposed within the inner chamber and is in thermal communication with the heating element. The capillary includes opposed first and second end portions, with the first end portion being disposable in the vaporizing material and the second end portion defining an opening in fluid communication with the internal chamber. The capillary is configured to convey the vaporizing material to the heating element. An inlet conduit in fluid communication with the inner chamber and fluidly connectable to a pressurized fluid source, and an outlet conduit in fluid communication with the inner chamber and configured to convey vapor from the inner chamber.
A battery case leak testing device includes a housing having a testing port. A pump is in fluid communication with the testing port and is configured to generate a prescribed pressure at the testing port. A pressure sensor is in fluid communication with the testing port to measure fluid pressure at the testing port. A controller is in operative communication with the pump and the pressure sensor, and is configured to facilitate operation of the pump in a first mode and a second mode. In the first mode, the pump operates to generate a first prescribed pressure at the testing port. In the second mode, the pump operates to generate a second prescribed pressure at the testing port. The controller transitions the pump from the first mode to the second mode when the pressure sensor measures a prescribed pressure characteristic when the pump is operating in the first mode.
G01M 3/32 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
H01M 10/42 - Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
32.
BALLOON CATHETER APPARATUS FOR HIGH PRESSURE LEAK DETECTION
An inflatable, balloon-type catheter apparatus which is conformable to fit most all intake and exhaust systems to delivery pressure (with or without smoke) to test the fluid integrity of the fluid system. The device is configured to be inserted into the canal of the intake or exhaust system and inflated to seal off the fluid system. The pressurized smoke is passed through the inflated inlet adapter to test for leaks.
F16L 55/134 - Means for stopping flow in pipes or hoses by introducing into the pipe a member expandable in situ introduced axially into the pipe or hose the closure device being a plug fixed by radially deforming the packing by means of an inflatable packing
G01M 3/28 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables, or tubesInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipe joints or sealsInvestigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for valves