A navigation system includes a plurality of information sources for use in determining a position estimate, including an inertial navigation system which determines an inertial-based position estimate, and a receiver which receives wireless signals from external transmitters. A first calculation unit repeatedly determines a first position estimate based on information derived from one or more of the information sources. A second calculation unit repeatedly determine a second position estimate based on information derived from one or more of the information sources. A selection unit repeatedly determines which of the first and second position estimates is more reliable, and selects one of these for output as an output position estimate. Over a period of time, first position estimate is determined based on a first set of information derived from one or more of the information sources, and the second position estimate is determined based on a second set of information.
G01S 19/49 - Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Henderson, Geoffrey Thomas
Fell, Christopher Paul
Ogle, Thomas Reed
Townsend, Kevin
Abstract
A gyroscope system includes at least one vibrating structure gyroscope having a structure, one or more drive transducers configured to drive the structure and one or more pick off transducers configured to detect oscillation of the structure. The vibrating structure gyroscope is configured to operate in a sensing mode or a diagnostic mode. The vibrating structure gyroscope being configured, during the sensing mode, to measure an angular rate of rotation of the vibrating structure gyroscope. The system also includes a controller configured to operate the vibrating structure gyroscope in the diagnostic mode such that the one or more drive transducers drive the structure at a frequency other than a resonant frequency of the structure.
G01C 19/5776 - Signal processing not specific to any of the devices covered by groups
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Henderson, Geoffrey Thomas
Abstract
A vibrating structure gyroscope includes: a structure configured to vibrate; one or more drive transducers configured to oscillate the structure at a resonant frequency or dampen oscillation of the structure; one or more drive circuits configured to activate the one or more drive transducers; one or more pick off transducers configured to detect oscillation of the structure; one or more pick off circuits configured to output a pick off circuit signal based on the detected oscillations; and one or more controllers configured to adjust a drive signal for the one or more drive transducers based on the one or more pick off circuit signals. The one or more controllers are configured to phase modulate the adjusted drive signal.
G01C 19/5677 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Henderson, Geoffrey Thomas
Abstract
A navigation system for an aircraft includes a microelectromechanical systems inertial measurement unit (MEMS-IMU), a camera that captures, over time, a series of images of the terrain below the aircraft, a terrain map comprising terrain elevation data, an inertial navigation system (INS) and an optical terrain-referenced navigation unit (O-TRN). The INS generates a first position estimate based on one or more signals output by the MEMS-IMU. The O-TRN identifies a terrain feature in an image captured by the camera, derives a terrain height estimate of the terrain feature, and generates a second position estimate based on a comparison between the terrain height estimate and terrain elevation data extracted from the terrain map. The navigation system generates a third position estimate based on the first position estimate and the second position estimate.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01C 5/00 - Measuring heightMeasuring distances transverse to line of sightLevelling between separated pointsSurveyors' levels
G06V 20/17 - Terrestrial scenes taken from planes or by drones
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Christopher Paul
Sturland, Ian Michael
Hawke, Tracey Ann
Abstract
A method for forming a MEMS structure for an inertial sensor from fused silica includes: depositing a conductive layer on one or more selected regions of a first surface of a fused silica substrate, and illuminating areas of the fused silica substrate with laser radiation in a pattern defining features of the MEMS structure for an inertial sensor. A masking layer is deposited at least on the one or more selected regions of the first surface of the fused silica substrate where the conductive layer has been deposited, such that the illuminated areas of the fused silica substrate remain exposed. A first etch of the exposed areas of the fused silica substrate is performed so as to selectively etch the pattern defining features of the MEMS structure for an inertial sensor.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Greep, Luke
Townsend, Kevin
Durston, Michael
Abstract
A signal processing system for a sensor. The system comprises a digital signal processing system configured to set a drive signal frequency for the primary drive transducer, a voltage controlled oscillator configured to receive an input indicative of the resonant frequency and to generate a first periodic signal at a first multiple of the resonant frequency, and a first phase locked loop, configured to receive the first periodic signal, and to generate a second periodic signal at a second multiple of the resonant frequency. The first and second periodic signals are used to control the operation of an analog-to-digital converter (ADC) configured to sample the primary pick off signal and a digital-to-analog converter (DAC) configured to generate a drive signal waveform applied to the primary drive transducer.
G01C 19/5776 - Signal processing not specific to any of the devices covered by groups
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01D 5/243 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of AC
H03L 7/085 - Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
H03L 7/099 - Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Henderson, Geoffrey
Abstract
A ground vehicle navigation system includes an inertial navigation system arranged to output an orientation estimate of the ground vehicle and a first position estimate of the ground vehicle, a terrain map comprising terrain data, a terrain gradient based navigation unit arranged to output a second position estimate of the ground vehicle based on a comparison between the orientation estimate and terrain gradient data extracted from the terrain map and an iterative algorithm unit arranged to determine a system error state in each iteration. In each iteration the iterative algorithm unit is arranged to receive the first position estimate and the second position estimate; and update the system error state for the next iteration based on the system error state, the first position estimate and the second position estimate. The iterative algorithm unit may then apply the updated system error state to the INS measurements.
G01S 19/49 - Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
G01S 13/931 - Radar or analogous systems, specially adapted for specific applications for anti-collision purposes of land vehicles
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Price, Andrew
Henderson, Geoffrey
Abstract
A terrain referenced navigation system includes a one sensor arranged to measure the elevation of terrain below a current position of the navigation system, a terrain elevation map comprising a plurality of map posts that each comprise terrain elevation data, and a land-water detection unit arranged to calculate a proportion of land and/or water of at least a portion of the terrain elevation map based on the terrain elevation data of said portion of said terrain elevation map. The land-water detection unit provides the ability to estimate a proportion of land and/or water of the terrain elevation map, using the terrain elevation data stored therein. The land-water detection unit allows the navigation system to detect areas of the map that contain transitions between land and water, and compensate accordingly when passing over these areas.
G01S 13/931 - Radar or analogous systems, specially adapted for specific applications for anti-collision purposes of land vehicles
G01S 19/47 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01C 19/5712 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
10.
QUADRATURE BIAS ERROR REDUCTION FOR VIBRATING STRUCTURE GYROSCOPES
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Townsend, Kevin
Fell, Christopher Paul
Abstract
A vibrating structure angular rate sensor includes a mount, a planar vibrating structure and a plurality of compliant supports extending between the mount and the planar vibrating structure to support the vibrating structure thereby allowing the planar vibrating structure to oscillate in its plane relative to the mount in response to an electrical excitation. A first set of transducers is arranged on the planar vibrating structure to apply, in use, an electrical excitation to the planar vibrating structure and to sense, in use, motion resulting from oscillation of the planar vibrating structure in its plane. A plurality of capacitive regions is fixed at a distance from the planar vibrating structure in its plane. The capacitive regions form a second set of transducers configured to apply, in use, an electrostatic force to the planar vibrating structure which induces a change in the frequency of oscillation of the planar vibrating structure.
09 - Scientific and electric apparatus and instruments
Goods & Services
Inertial measurement units comprising accelerometers, gyroscopes, and gyrometers, and structural parts and fittings thereof; inertial measurement units comprising accelerometers, gyroscopes, and gyrometers for use in navigation and guidance systems and in tracking systems, and structural parts and fittings thereof
12.
Methods for closed loop operation of capacitive accelerometers
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher Paul
Malvern, Alan
Abstract
B, of the DC voltage applied to the proof mass by the DC biasing element so as to provide a net electrostatic restoring force on the proof mass for balancing the inertial force of the applied acceleration and maintaining the proof mass at a null position, when the applied acceleration is greater than a threshold acceleration value.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01D 3/06 - Measuring arrangements with provision for the special purposes referred to in the subgroups of this group with provision for operation by a null method
G01L 1/14 - Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Wilkinson, Nicholas Robert Geoffrey
Godfrey, Martin Richard
Abstract
A terrain-referenced navigation system for an aircraft comprises: a stored digital terrain map; a position calculation unit arranged to calculate aircraft position relative to the stored digital terrain map to determine a terrain-referenced aircraft position; a fall line calculation unit arranged to calculate a fall line for a projectile starting from the terrain-referenced aircraft position as a launch point; and an impact point calculation unit arranged to directly compare the fall line with the digital terrain map, by incrementally comparing a height of the projectile along the fall line with a height of the terrain according to the stored digital terrain map in order to find an expected impact point on the terrain.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
A vibrating structure angular rate sensor comprises a MEMS structure includes a mount, a plurality of supporting structures fixed to the mount, and a vibrating planar ring structure flexibly supported by the plurality of supporting structures to move elastically relative to the mount. At least one primary drive transducer is arranged to cause the ring structure to oscillate in a primary mode at the resonant frequency of the primary mode. At least one primary pick-off transducer arranged to detect oscillation of the ring structure in the primary mode. At least three secondary pick-off transducers are arranged to detect oscillation of the ring structure in a secondary mode induced by Coriolis force when an angular rate is applied around an axis substantially perpendicular to the ring structure. At least one secondary drive transducer is arranged to null the induced oscillation in the secondary mode.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01C 19/5719 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Sheard, John Keith
Williamson, Matthew
Abstract
A method of demodulating a MEMS sensor pickoff signal from a vibrating resonator of said sensor, the method comprising: sampling the pickoff signal with an asynchronous ADC at a sampling rate of at least 50 times the resonant frequency of the resonator to generate a stream of samples; generating a first value by combining samples from said stream of samples according to a selected operation, said operation being selected in dependence on a synchronous clock signal that is synchronous to the resonant frequency of the resonator, said synchronous clock signal having a frequency at least twice the resonant frequency of the resonator; and counting the number of samples contributing to the first value. The increased sampling rate of the pickoff signal allows a much higher number of samples to be taken into account, thereby reducing noise. However, the ADC asynchronously from the resonator of the MEMS sensor.
G01C 19/5776 - Signal processing not specific to any of the devices covered by groups
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
H03D 3/00 - Demodulation of angle-modulated oscillations
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Henderson, Geoffrey
Abstract
A method of determining a reference direction for an angular measurement device, comprising: providing a rigid structure having an antenna for a global navigation satellite system (GNSS) fixed at a first point thereof; fixing the angular measurement device to a second point on the rigid structure, separated from the first point by at least 0.5 meters; while rotating the rigid structure so as to cause rotational movement of the antenna around the sensitive axis, acquiring velocity measurement data from the GNSS and angular velocity measurement data from the angular measurement device; and using the velocity measurement data and the angular velocity measurement data to determine a reference direction for the angular measurement device.
G01S 19/47 - Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Williamson, Matthew
Sheard, John Keith
Gregory, Christopher M.
Abstract
A vibrating structure gyroscope includes a permanent magnet, a structure arranged in a magnetic field of the permanent magnet and arranged to vibrate under stimulation from at least one primary drive electrode and a drive system that includes: one primary drive electrode arranged at least one primary sense electrode arranged to sense motion in the vibrating structure and a drive control loop controlling the primary drive electrode dependent on the primary sense electrode. The structure also includes a compensation unit arranged to receive a signal from the drive system representative of a gain in the drive control loop and arranged to output a scale factor correction based on that signal. As the magnet degrades (e.g. naturally over time as the material ages), the magnetic field weakens. To compensate for this, the primary drive control loop will automatically increase the gain.
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
G01C 19/5755 - Structural details or topology the devices having a single sensing mass
G01C 19/5677 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Henderson, Geoffrey Thomas
Abstract
A terrain-based navigation system include at least three laser range finders, each fixedly mounted to a vehicle body, each pointing in a different direction and arranged such that they can be used to calculate terrain gradient in two dimensions. Existing terrain-based navigation systems for aircraft that use a radar altimeter to determine the distance of the vehicle from the ground make use of the large field of view of the radar altimeter. The first return signal from the radar altimeter may not be from directly below the aircraft, but will be interpreted as being directly below the aircraft, thereby impairing the chances of obtaining a terrain match, or impairing the accuracy of a terrain match. The use of a plurality of laser range finders each fixedly mounted to the vehicle body allows more terrain information to be obtained as the terrain can be detected from the plurality of different directions.
An inertial navigation system includes a first inertial measurement unit with at least a first sensor and a second inertial measurement unit with at least a second sensor corresponding in type to the first sensor. The first inertial measurement unit is rotatably mounted relative to the second inertial measurement unit, The inertial navigation system further include a controller arranged to: acquire a first set of measurements simultaneously from both the first inertial measurement unit and the second inertial measurement unit; rotate the first inertial measurement unit relative to the second inertial measurement unit; acquire a second set of measurements simultaneously from both the first inertial measurement unit and the second inertial measurement unit; and calculate from the first set of measurements and the second set of measurements at least one error characteristic of the first sensor and/or the second sensor.
G01C 21/18 - Stabilised platforms, e.g. by gyroscope
B64G 1/28 - Guiding or controlling apparatus, e.g. for attitude control using inertia or gyro effect
G01C 19/5719 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
A sensor package includes a sensor, at least one external wall, and an interposer, arranged between the sensor and the at least one external wall. The sensor is wire bonded to the interposer and the interposer is wire bonded to the at least one external wall. Using an interposer, wire bonded to both the sensor and the at least one external wall, is an improved approach to electrically connecting a sensor and a sensor package. The interposer allows for short wire bonds from the sensor and the at least one external wall to the interposer, replacing the single, long wire bond from the sensor to the at least one external wall in the prior art. This provides improved resilience of the sensor package under high stress. Furthermore, it allows an existing sensor and package combination to be improved without needing to redesign either component.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Harish, Kiran
Abstract
A sensor package comprising: a sensor, wherein the sensor comprises a sensing structure formed in a material layer and one or more further material layers arranged to seal the sensing structure to form a hermetically sealed sensor unit; a support structure; one or more springs flexibly fixing the hermetically sealed sensor unit to the support structure; wherein the one or more springs are formed in the same material layer as the sensing structure of the sensor unit; and one or more external package wall(s) encapsulating the sensor unit, the support structure, and the one or more springs, wherein the support structure is fixed to at least one of the package wall(s). The springs decouple mechanical stresses between the sensor unit and the external package wall(s) so as to reduce the long term drift of scale factor and bias.
G01C 19/5677 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
A method of manufacturing an inertial measurement unit (IMU) comprises fabricating a plurality of individual MEMS inertial sensor packages at a package level as sealed packages containing a MEMS inertial sensor chip and an integrated circuit electrically connected together. Fabricating the individual MEMS inertial sensor packages comprises forming mechanical interconnect features in each package and assembling the IMU by mechanically interconnecting each individual MEMS inertial sensor package with another individual MEMS inertial sensor package in a mutually orthogonal orientation.
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
G01C 19/5783 - Mountings or housings not specific to any of the devices covered by groups
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
24.
Angular rate sensors having supporting structures which comprise one passive supporting structure
1. The plurality of supporting structures comprises at least one active supporting structure which carries an active electrical connection from the annular member to the drive system; and at least one passive supporting structure which does not carry an active electrical connection from the annular member to the drive system.
G01C 19/5677 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01C 19/5783 - Mountings or housings not specific to any of the devices covered by groups
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
A sensing structure for an accelerometer includes a support and a proof mass mounted thereto by flexible legs. The proof mass has moveable electrode fingers perpendicular to the sensing direction and at least four fixed capacitor electrodes, with fixed capacitor electrode fingers perpendicular to the sensing direction. The fixed capacitor electrode fingers interdigitate with the movable electrode fingers and the proof mass is mounted to the support by an anchor on a centre line of the proof mass. The proof mass has an outer frame surrounding the fixed capacitor electrodes and the flexible legs extend laterally inwardly from the proof mass to the anchor. The fixed capacitor electrodes comprise two inner electrodes, one on each side of the proof mass centre line, and two outer electrodes, one on each side of the proof mass centre line.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
27.
Angular rate sensors including one or more supporting structures having portions with different thicknesses
An annular resonator for a vibrating structure angular rate sensor comprises a planar annular member that lies in the X-Y plane and one or more supporting structures arranged to flexibly support the annular member in the X-Y plane. The one or more supporting structures each comprise a radial portion, extending radially from the annular member and having a first thickness in the X-Y plane, and a circumferential portion, extending circumferentially from the radial portion and having a second thickness in the X-Y plane, wherein the first thickness is greater than the second thickness.
G01C 19/5677 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01C 19/5783 - Mountings or housings not specific to any of the devices covered by groups
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Faulkner, Nicholas Mark
Sheard, John Keith
Abstract
An inertial measurement system comprising: a first, roll gyro with an axis oriented substantially parallel to the spin axis of the projectile; a second gyro and a third gyro with axes arranged with respect to the roll gyro; a controller, arranged to: compute a current projectile attitude from the outputs of the first, second and third gyros; operate a Kalman filter that receives a plurality of measurement inputs including at least roll angle, pitch angle and yaw angle and that outputs at least a roll angle error; initialise the Kalman filter with a roll angle error uncertainty representative of a substantially unknown roll angle; generate at least one pseudo-measurement from stored expected flight data; provide said pseudo-measurement(s) to the corresponding measurement input of the Kalman filter; and apply the roll angle error from the Kalman filter as a correction to the roll angle.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Mansfield, Thomas
Williamson, Matthew
Abstract
A method for determining an operational characteristic of a vibrating structure gyroscope having a movable mass includes: driving the mass to oscillate along a first, predefined path; rotating the vibrating structure gyroscope so as to oscillate the mass along a second path, wherein the second path is different to the first, predefined path; sensing the oscillation of the mass along the second path so as to generate a sensing signal; converting the sensing signal into an in-phase signal and an out-of-phase signal using a demodulator, wherein the in-phase signal is in phase with the oscillation of the mass along the first path, and the out-of-phase signal is out of phase with the in-phase signal.
A method of determining whether parametric performance of an inertial sensor has been degraded comprises: recording first data output from an inertial sensor; then recording second data output from the inertial sensor; comparing the first data output with the second data output; and determining whether the parametric performance of the inertial sensor has been degraded based on the comparison between the first and second data output.
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01P 15/18 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration in two or more dimensions
G01P 15/09 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by piezoelectric pick-up
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/12 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by alteration of electrical resistance
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Abstract
b) formed on a surface of the insulative support layer axially spaced from the surface of the planar ring. The first and second sets of conductive electrode tracks are interdigitated with a lateral spacing between them in a radial direction. Each moveable conductive electrode track has a radial offset from a median line between adjacent fixed conductive electrode tracks such that each moveable conductive electrode track has a different lateral spacing from two different adjacent fixed conductive electrode tracks in opposite radial directions.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Harish, Kiran Mysore
Malvern, Alan
Abstract
A capacitive accelerometer comprises: a substantially planar proof mass mounted to a fixed substrate by flexible support legs so as to be linearly moveable in an in-plane sensing direction. The proof mass comprises first and second sets of moveable capacitive electrode fingers. First and second sets of fixed capacitive electrode fingers interdigitates with the first and second sets of moveable electrode fingers respectively. A set of moveable damping fingers extend from the proof mass substantially perpendicular to the sensing direction, laterally spaced in the sensing direction. A set of fixed damping fingers mounted to the fixed substrate interdigitates with the set of moveable damping fingers and comprises an electrical connection to the proof mass so that the interdigitated damping fingers are electrically common. The damping fingers are mounted in a gaseous medium that provides a damping effect.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
A navigation system comprising: an inertial navigation system arranged to output a first position estimate; a terrain based navigation unit arranged to output a second position estimate; a stored gravity map arranged to receive a position and to output gravity information for that position; and an iterative algorithm unit arranged to determine an INS error state in each iteration; wherein in each iteration the iterative algorithm unit is arranged to: receive the first position estimate and the second position estimate; determine a gravity corrected position estimate based on the first position estimate, the INS error state and the gravity information; and update the INS error state for the next iteration based on the INS error state, the gravity corrected position estimate and the second position estimate.
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01C 23/00 - Combined instruments indicating more than one navigational value, e.g. for aircraftCombined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
G01C 21/00 - NavigationNavigational instruments not provided for in groups
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Wilkinson, Nicholas R.
Abstract
A navigation system comprising: an inertial navigation system arranged to output a first position estimate; a terrain based navigation unit arranged to output a second position estimate; a gravity based navigation unit arranged to output a third position estimate; a stored gravity map arranged to receive a position and to output gravity information for that position; and an iterative algorithm unit arranged to determine an INS error state in each iteration; wherein in each iteration the iterative algorithm unit is arranged to: receive the first position estimate, the second position estimate, and the third position estimate; determine a gravity corrected position estimate based on the first position estimate, the INS error state and the gravity information; and update the INS error state for the next iteration based on the INS error state, the gravity corrected position estimate, the second position estimate and the third position estimate.
G01C 21/00 - NavigationNavigational instruments not provided for in groups
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01C 21/04 - NavigationNavigational instruments not provided for in groups by terrestrial means
An accelerometer closed loop control system comprising: a capacitive accelerometer comprising a proof mass moveable relative to first and second fixed capacitor electrodes; a PWM generator to generate in-phase and anti-phase PWM drive signals with an adjustable mark/space ratio, wherein said drive signals are applied to the first and second electrodes such that they are charged alternately; an output signal detector to detect a pick-off signal from the accelerometer representing a displacement of the proof mass from a null position to provide an error signal, wherein the null position is the position of the proof mass relative to the fixed electrodes when no acceleration is applied; a PWM servo operating in closed loop to vary the mark/space ratio of said PWM drive signals in response to the error signal so that mechanical inertial forces are balanced by electrostatic forces.
G01P 15/11 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by magnetically sensitive devices by inductive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
36.
Micro electromechanical systems (MEMS)inertial sensor
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Durston, Michael
Townsend, Kevin
Abstract
An micro electro mechanical sensor comprising: a substrate; and a sensor element movably mounted to a first side of said substrate; wherein a second side of said substrate has a pattern formed in relief thereon. The pattern formed in relief on the second side of the substrate provides a reduced surface area for contact with the die bond layer. The reduced surface area reduces the amount of stress that is transmitted from the die bond layer to the substrate (and hence reduces the amount of transmitted stress reaching the MEMS sensor element). Because the substrate relief pattern provides a certain amount of stress decoupling, the die bond layer does not need to decouple the stress to the same extent as in previous designs. Therefore a thinner die bond layer can be used, which in turn allows the whole package to be slightly thinner.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Thomas, Henry James
Abstract
A mounting system for mounting an electronic component (2) in a housing (8) comprises a visco-elastic damping element (14, 20) for damping the transmission of vibration from the housing (8) to the component (2) in use, and a support (24, 52) for supporting the component (2) in the housing (8) independently of the damping element (14, 20) whereby the weight of the component (2) is substantially or completely removed from the damping element (14, 20). The support (24, 52) is configured to be selectively releasable from the component (2) such that the component (2) is then supported only by the damping element (14, 20).
F42B 30/00 - Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
F42B 15/08 - Self-propelled projectiles or missiles, e.g. rocketsGuided missiles for carrying measuring instruments
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Thomas, Henry James
Abstract
An assembly (2) for attachment to a projectile comprises a first part (4) and a second part (6) mounted for rotation relative to the first part (4) about an axis (A). There is an axial gap (G) between the first and second parts (4, 6). At least one plastically deformable element (34) is arranged within the gap (G) between the first and second parts (4, 6), the plastically deformable element (34) being such as to deform due to the closing of the axial gap (G) between the first and second parts (4, 6) during launch of the projectile.
F42B 12/12 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with shaped or hollow charge rotatably mounted with respect to missile housing
F42B 12/00 - Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Townsend, Kevin
Clifford, Andrew
Wilkinson, Nicholas
Abstract
There is provided a method of sensing a rotation rate using a vibrating structure gyroscope, said gyroscope comprising an electronic control system comprising one or more control loops, wherein at least one of said control loops comprises a filter having a variable time constant, said method comprising the steps of: determining or estimating a characteristic of the vibrating structure of said gyroscope; and adapting or varying said time constant of said filter with the determined or estimated characteristic of said vibrating structure.
G01C 19/5776 - Signal processing not specific to any of the devices covered by groups
G01D 1/16 - Measuring arrangements giving results other than momentary value of variable, of general application giving a value which is a function of two or more values, e.g. product or ratio
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Sheard, John Keith
Faulkner, Nicholas Mark
Abstract
A method of compensating for signal error is described, comprising: receiving a first signal from a first sensor, said first signal indicative of a movement characteristic; applying an error compensation to said first signal to produce an output signal; applying a variable gain factor to said error compensation; receiving a second signal from a second sensor indicative of said movement characteristic; wherein said error compensation is calculated using the difference between said output signal and said second signal, and said variable gain factor is calculated using said first signal.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01C 23/00 - Combined instruments indicating more than one navigational value, e.g. for aircraftCombined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
An inertial measurement system for a spinning projectile comprising: first (roll), second and third gyros with axes arranged such that they define a three dimensional coordinate system; at least a first linear accelerometer; a controller, arranged to: compute a current projectile attitude comprising a roll angle, a pitch angle and a yaw angle; compute a current velocity vector from the accelerometer; combine a magnitude of said velocity vector with an expected direction for said vector to form a pseudo-velocity vector; provide the velocity vector and the pseudo-velocity vector to a Kalman filter that outputs a roll gyro scale factor error calculated as a function of the difference between the velocity vector and the pseudo-velocity vector; and apply the roll gyro scale factor error from the Kalman filter as a correction to the output of the roll gyro.
G01C 21/18 - Stabilised platforms, e.g. by gyroscope
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01S 19/49 - Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Durston, Michael Terence
Townsend, Kevin
Sitch, Douglas Robert
Abstract
A successive approximation Analog to Digital Converter (ADC), comprising: a sample and hold device arranged to sample and hold an input signal at the beginning of a conversion cycle; a successive approximation register that sequentially builds up a digital output from its most significant bit to its least significant bit; a digital to analog converter that outputs a signal based on the output of the successive approximation register; a comparator that compares the output of the digital to analog converter with an output of the sample and hold device and supplies its output to the successive approximation register; and a residual signal storage device arranged to store the residual signal at the end of a conversion cycle; and wherein the successive approximation ADC is arranged to add the stored residual signal from the residual signal storage device to the input signal stored on the sample and hold device at the start of each conversion cycle. After each ADC full conversion by the SAR, the analog conversion of the digital output is as close to the original input signal as the resolution will allow. However there remains the residual part of the input signal that is smaller than what can be represented by the least significant bit of the digital output of the SAR. In normal operation, successive outputs of a SAR for the same input will result in the same digital value output and the same residual. By storing the residual at the end of each conversion and adding the residual onto the input signal of the next conversion the residuals are accumulated over time so that they may affect the output digital value. After a number of conversions, the accumulated residuals add up to more than the value represented by the LSB of the register and the digital value will be one higher than if a conversion had been performed on the input signal alone. In this way, the residual signal affects the output value in time and thus can be taken into account by processing the digital output in the time domain.
H03M 1/06 - Continuously compensating for, or preventing, undesired influence of physical parameters
H03M 1/08 - Continuously compensating for, or preventing, undesired influence of physical parameters of noise
H03M 1/80 - Simultaneous conversion using weighted impedances
H03M 1/46 - Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
43.
Inertial navigation system with compensation of roll scale factor error
An inertial measurement system (200) for a longitudinal projectile, comprising a first, roll gyro to be oriented substantially parallel to the longitudinal axis of the projectile; a second gyro and a third gyro with axes arranged with respect to the roll gyro such that they define a three dimensional coordinate system. The system further comprises a controller (225, 250), arranged: —to compute a current projectile attitude from the outputs of the first, second and third gyros, the computed attitude comprising a roll angle, a pitch angle and a yaw angle; —for at least two time points, to compare the computed pitch and yaw angles with expected values for the pitch and yaw angles; —for each of said at least two time points, to calculate a roll angle error based on the difference between the computed pitch and yaw angles and the expected pitch and yaw angles; —to calculate a roll angle error difference between said at least two time points; —to calculate the total roll angle subtended between said at least two time points; —to calculate a roll angle scale factor error based on said computed roll angle error difference and said total subtended roll angle and apply the calculated roll angle scale factor error to the output of the roll gyro.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
F42B 15/01 - Arrangements thereon for guidance or control
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
F41G 7/36 - Direction control systems for self-propelled missiles based on predetermined target position data using inertial references
F41G 7/00 - Direction control systems for self-propelled missiles
44.
Digital controlled VCO for vibrating structure gyroscope
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Townsend, Kevin
Durston, Michael
Abstract
A digitally controlled voltage controlled oscillator comprising an Nbit digital to analogue convertor arranged to receive a frequency change demand signal as a digital Nbit word, and having an output provided via an integrator to a voltage controlled oscillator configured to provide a frequency output.
An inertial sensor includes a substantially planar, rotationally symmetric proof mass, a capacitive pick-off circuit connected to the proof mass, an electrical drive circuit connected to the four pairs of electrodes. The drive circuit is arranged to apply first in-phase and anti-phase pulse width modulation (PWM) drive signals with a first frequency to the first and third electrode pairs, such that one electrode in each pair is provided with in-phase PWM drive signals and the other electrode in each pair is provided with anti-phase PWM drive signals and to apply second in-phase and anti-phase PWM drive signals with a second frequency, different to the first frequency, to the second and fourth electrode pairs, such that one electrode in each pair is provided with in-phase PWM drive signals and the other electrode in each pair is provided with anti-phase PWM drive signals.
G01C 19/56 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
G01C 19/5776 - Signal processing not specific to any of the devices covered by groups
G01P 15/18 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration in two or more dimensions
G01C 19/5677 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
G01C 19/5762 - Structural details or topology the devices having a single sensing mass the sensing mass being connected to a driving mass, e.g. driving frames
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01P 15/097 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by vibratory elements
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Sheard, John Keith
Faulkner, Nicholas Mark
Abstract
An inertial measurement system for a spinning projectile includes: a first, roll gyro to be oriented substantially parallel to the spin axis of the projectile; a second gyro and a third gyro with axes arranged with respect to the roll gyro; a controller, arranged to: compute a current projectile attitude from the outputs of the first, second and third gyros, the computed attitude comprising a roll angle, a pitch angle and a yaw angle; calculate a roll angle error; provide the roll angle error as an input to a Kalman filter that outputs a roll angle correction and a roll rate scale factor correction; and apply the calculated roll angle correction and roll rate scale factor correction to the output of the roll gyro.
F42B 15/01 - Arrangements thereon for guidance or control
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01P 13/02 - Indicating direction only, e.g. by weather vane
G05D 1/10 - Simultaneous control of position or course in three dimensions
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
F41G 7/36 - Direction control systems for self-propelled missiles based on predetermined target position data using inertial references
2′ to a second set of fixed capacitive electrode fingers. This provides a net electrostatic restoring force on the proof mass for balancing the inertial force of the applied acceleration and maintains the proof mass at a null position.
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
In a method for open loop operation of a capacitive accelerometer, a first mode of operation comprises electrically measuring a deflection of a proof mass (204) from the null position under an applied acceleration using a pickoff amplifier (206) set to a reference voltage Vcm. A second mode of operation comprises applying electrostatic forces in order to cause the proof mass (204) to deflect from the null position, and electrically measuring the forced deflection so caused. In the second mode of operation the pickoff amplifier (206) has its input (211) switched from Vcm to Vss, using a reference control circuit (209), so that drive amplifiers (210) can apply different voltages Vdd to the proof mass (204) and associated fixed electrodes (202).
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
A sensor comprises a substrate 16 and a sensor element 20 anchored to the substrate 16, the substrate 16 and sensor element 20 being of dissimilar materials and having different coefficients of thermal expansion, the sensor element 20 and substrate 16 each having a generally planar face arranged substantially parallel to one another, the sensor further comprising a spacer 26, the spacer 26 being located so as to space at least part of the sensor element 20 from at least part of the substrate 16, wherein the spacer 26 is of considerably smaller area than the area of the smaller of face of the substrate 16 and that of the sensor element 20.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
A method for closed loop operation of a capacitive accelerometer comprising: a proof mass; first and second sets of both fixed and moveable capacitive electrode fingers, interdigitated with each other; the method comprising: applying PWM drive signals to the fixed fingers; sensing displacement of the proof mass and changing the mark:space ratio of the PWM drive signals, to provide a restoring force on the proof mass that balances the inertial force of the applied acceleration and maintains the proof mass at a null position; detecting when the mark:space ratio for the null position is beyond a predetermined upper or lower threshold; and further modulating the PWM drive signals by extending or reducing x pulses in every y cycles, where x>1 and y>1, to provide an average mark:space ratio beyond the upper or lower threshold without further increasing or decreasing the mark length of the other pulses.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Gregory, Christopher
Abstract
A method of determining whether parametric performance of an inertial sensor has been degraded comprises: recording first data output from an inertial sensor; then recording second data output from the inertial sensor; comparing the first data output with the second data output; and determining whether the parametric performance of the inertial sensor has been degraded based on the comparison between the first and second data output.
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Harish, Kiran
Malvern, Alan
Abstract
A capacitive accelerometer (202) comprises: a substantially planar proof mass (204) mounted to a fixed substrate by flexible support legs (250) so as to be linearly moveable in an in-plane sensing direction (200). The proof mass comprises first and second sets of moveable capacitive electrode fingers. First and second sets of fixed capacitive electrode fingers interdigitates with the first and second sets of moveable electrode fingers respectively (221, 222). A set of moveable damping fingers (224) extend from the proof mass substantially perpendicular to the sensing direction, laterally spaced in the sensing direction. A set of fixed damping fingers (222) mounted to the fixed substrate interdigitates with the set of moveable damping fingers and comprises an electrical connection (260) to the proof mass so that the interdigitated damping fingers (228, 230) are electrically common. The damping fingers are mounted in a gaseous medium that provides a damping effect.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
B81B 5/00 - Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Abstract
An angular velocity sensor comprises: an insulative support layer (10); a substrate layer (8) formed of a silica-based material and comprising a planar ring structure (2) mounted to vibrate in-plane; and a plurality of conductive electrodes (14), each comprising a first set of moveable conductive electrode tracks (14a) formed on a surface of the planar ring and a second set of fixed conductive electrode tracks (14b) formed on a surface of the insulative support layer axially spaced from the surface of the planar ring. The first and second sets of conductive electrode tracks are interdigitated with a lateral spacing between them in a radial direction. Each moveable conductive electrode track has a radial offset from a median line between adjacent fixed conductive electrode tracks such that each moveable conductive electrode track has a different lateral spacing from two different adjacent fixed conductive electrode tracks in opposite radial directions.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
An inertial measurement system for a longitudinal projectile comprising: a first, roll gyro to be oriented substantially parallel to the longitudinal axis of the projectile; a second gyro and a third gyro with axes arranged with respect to the roll gyro such that they define a three dimensional coordinate system; a controller, arranged to: compute a current projectile attitude from the outputs of the first, second and third gyros, the computed attitude comprising a roll angle, a pitch angle and a yaw angle; compare the computed pitch and yaw angles with expected values for the pitch and yaw angles; calculate a roll angle error and a roll scale factor error based on the difference between the computed pitch and yaw angles and the expected pitch and yaw angles; and apply the calculated roll angle error and roll scale factor error to the output of the roll gyro.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
A sensing structure for an accelerometer includes a support and a proof mass mounted to the support by flexible legs for in-plane movement in response to an applied acceleration along a sensing direction. The proof mass includes a plurality of moveable electrode fingers extending substantially perpendicular to the sensing direction and spaced apart in the sensing direction. The structure also includes at least one pair of fixed capacitor electrodes comprising first and second sets of fixed electrode fingers extending substantially perpendicular to the sensing direction and spaced apart in the sensing direction; the first set of fixed electrode fingers arranged to interdigitate with the moveable electrode fingers with a first offset in one direction from a median line therebetween, and the second set of fixed electrode fingers arranged to interdigitate with the moveable electrode fingers with a second offset in the opposite direction from a median line therebetween.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
A capacitive accelerometer including: at least one additional fixed capacitor electrode with a plurality of additional fixed capacitive electrode fingers extending along the sensing direction. The proof mass comprises a plurality of moveable capacitive electrode fingers extending from the proof mass along the sensing direction and arranged to interdigitate with the plurality of additional fixed capacitive electrode fingers of the at least one additional fixed capacitor electrode. A means is provided for applying a voltage to the at least one additional fixed capacitor electrode to apply an electrostatic force to the plurality of moveable capacitive electrode fingers that acts to pull the proof mass towards the at least one further fixed capacitor electrode and thereby reduces the lateral spacings between the movable capacitive electrode fingers of the proof mass and the first and second sets of fixed capacitive electrode fingers that provide electrostatic forces for sensing purposes.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
B81B 5/00 - Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Thomas, Henry James
Abstract
A mounting system for mounting an electronic component (2) in a housing (8) comprises a visco-elastic damping element (14, 20) for damping the transmission of vibration from the housing (8) to the component (2) in use, and a support (24, 52) for supporting the component (2) in the housing (8) independently of the damping element (14, 20) whereby the weight of the component (2) is substantially or completely removed from the damping element (14, 20). The support (24, 52) is configured to be selectively releasable from the component (2) such that the component (2) is then supported only by the damping element (14, 20).
F42B 15/08 - Self-propelled projectiles or missiles, e.g. rocketsGuided missiles for carrying measuring instruments
F42B 30/00 - Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Thomas, Henry James
Abstract
An assembly (2) for attachment to a projectile comprises a first part (4) and a second part (6) mounted for rotation relative to the first part (4) about an axis (A). There is an axial gap (G) between the first and second parts (4, 6). At least one plastically deformable element (34) is arranged within the gap (G) between the first and second parts (4, 6), the plastically deformable element (34) being such as to deform due to the closing of the axial gap (G) between the first and second parts (4, 6) during launch of the projectile.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan Richard
Harish, Kiran
Abstract
A closed loop method of controlling a capacitive accelerometer uses two servo loops. A Vcrit servo loop uses an output signal (S2) modulated by a sine wave signal (S1). The Vcrit control signal adjusts the magnitude of the PWM drive signals applied to the fixed capacitor electrodes of the accelerometer, thereby optimising open loop gain.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Sheard, John Keith
Faulkner, Nicholas Mark
Abstract
A method of compensating for signal error is described, comprising: receiving a first signal from a first sensor, said first signal indicative of a movement characteristic; applying an error compensation to said first signal to produce an output signal; applying a variable gain factor to said error compensation; receiving a second signal from a second sensor indicative of said movement characteristic; wherein said error compensation is calculated using the difference between said output signal and said second signal, and said variable gain factor is calculated using said first signal.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Townsend, Kevin
Clifford, Andrew
Wilkinson, Nicholas
Abstract
There is provided a method of sensing a rotation rate using a vibrating structure gyroscope, said gyroscope comprising an electronic control system comprising one or more control loops, wherein at least one of said control loops comprises a filter having a variable time constant, said method comprising the steps of: determining or estimating a characteristic of the vibrating structure of said gyroscope; and adapting or varying said time constant of said filter with the determined or estimated characteristic of said vibrating structure.
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Silver, Mark
Abstract
An aircraft ground collision detection system comprising: an object detection device for mounting on an aircraft and arranged to detect objects and output the location of each detected object; and a processor arranged to: receive the ground speed of the aircraft and the heading of the aircraft and the detected location of each detected object; predict the aircraft's path based on the ground speed and the heading; compare the predicted aircraft path with the object locations; and output an alert based on the overlap or proximity of the predicted aircraft path with the object locations. By predicting the path of the aircraft based on detected ground speed and heading, the system can accurately assess which detected objects pose a collision threat.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Durston, Michael Terrence
Townsend, Kevin
Sitch, Douglas Robert
Abstract
A successive approximation Analogue to Digital Converter (ADC), comprising: a sample and hold device arranged to sample and hold an input signal at the beginning of a conversion cycle; a successive approximation register that sequentially builds up a digital output from its most significant bit to its least significant bit; a digital to analogue converter that outputs a signal based on the output of the successive approximation register; a comparator that compares the output of the digital to analogue converter with an output of the sample and hold device and supplies its output to the successive approximation register; and a residual signal storage device arranged to store the residual signal at the end of a conversion cycle; and wherein the successive approximation ADC is arranged to add the stored residual signal from the residual signal storage device to the input signal stored on the sample and hold device at the start of each conversion cycle. After each ADC full conversion by the SAR, the analogue conversion of the digital output is as close to the original input signal as the resolution will allow. However there remains the residual part of the input signal that is smaller than what can be represented by the least significant bit of the digital output of the SAR. In normal operation, successive outputs of a SAR for the same input will result in the same digital value output and the same residual. By storing the residual at the end of each conversion and adding the residual onto the input signal of the next conversion the residuals are accumulated over time so that they may affect the output digital value. After a number of conversions, the accumulated residuals add up to more than the value represented by the LSB of the register and the digital value will be one higher than if a conversion had been performed on the input signal alone. In this way, the residual signal affects the output value in time and thus can be taken into account by processing the digital output in the time domain.
H03M 1/06 - Continuously compensating for, or preventing, undesired influence of physical parameters
H03M 1/46 - Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
64.
INERTIAL NAVIGATION SYSTEM WITH COMPENSATION OF ROLL SCALE FACTOR ERROR
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Sheard, John Keith
Faulkner, Nicholas Mark
Abstract
An inertial measurement system (200) for a longitudinal projectile, comprising a first, roll gyro to be oriented substantially parallel to the longitudinal axis of the projectile; a second gyro and a third gyro with axes arranged with respect to the roll gyro such that they define a three dimensional coordinate system. The system further comprises a controller (225, 250), arranged: - to compute a current projectile attitude from the outputs of the first, second and third gyros, the computed attitude comprising a roll angle, a pitch angle and a yaw angle; - for at least two time points, to compare the computed pitch and yaw angles with expected values for the pitch and yaw angles; - for each of said at least two time points, to calculate a roll angle error based on the difference between the computed pitch and yaw angles and the expected pitch and yaw angles; - to calculate a roll angle error difference between said at least two time points; - to calculate the total roll angle subtended between said at least two time points; - to calculate a roll angle scale factor error based on said computed roll angle error difference and said total subtended roll angle and apply the calculated roll angle scale factor error to the output of the roll gyro.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01C 25/00 - Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
F41G 7/36 - Direction control systems for self-propelled missiles based on predetermined target position data using inertial references
F42B 15/01 - Arrangements thereon for guidance or control
G05D 1/10 - Simultaneous control of position or course in three dimensions
65.
DIGITAL CONTROLLED VCO FOR VIBRATING STRUCTURE GYROSCOPE
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Townsend, Kevin
Durston, Michael
Abstract
A digitally controlled voltage controlled oscillator comprising an Nbit digital to analogue convertor arranged to receive a frequency change demand signal as a digital Nbit word, and having an output provided via an integrator to a voltage controlled oscillator configured to provide a frequency output.
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Townsend, Kevin
Abstract
c and represents an in-phase digital reference signal substantially in the form of a sine and/or cosine wave; and multiplying the input bit stream with the in-phase reference bit stream to produce an output bit stream representing the amplitude modulation of the analog signal.
H03K 3/017 - Adjustment of width or dutycycle of pulses
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01C 19/5776 - Signal processing not specific to any of the devices covered by groups
H03D 1/18 - Demodulation of amplitude-modulated oscillations by means of non-linear elements having more than two poles of semiconductor devices
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Townsend, Kevin
Durston, Michael
Sitch, Douglas
Abstract
A method for closed loop operation of a capacitive accelerometer uses a single current source (62) and a single current sink (64) to apply an in-phase drive signal V1 ' to a first set of fixed capacitive electrode fingers and a corresponding anti-phase drive signal V 2 'to a second set of fixed capacitive electrode fingers. This provides a net electrostatic restoring force on the proof mass for balancing the inertial force of the applied acceleration and maintains the proof mass at a null position.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Durston, Michael
Townsend, Kevin
Abstract
In a method for open loop operation of a capacitive accelerometer, a first mode of operation comprises electrically measuring a deflection of a proof mass (204) from the null position under an applied acceleration using a pickoff amplifier (206) set to a reference voltage Vcm. A second mode of operation comprises applying electrostatic forces in order to cause the proof mass (204) to deflect from the null position, and electrically measuring the forced deflection so caused. In the second mode of operation the pickoff amplifier (206) has its input (211) switched from Vcm to Vss, using a reference control circuit (209), so that drive amplifiers (210) can apply different voltages Vdd to the proof mass (204) and associated fixed electrodes (202).
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Townsend, Kevin
Durston, Michael Terrence
Abstract
A method for closed loop operation of a capacitive accelerometer comprising: a proof mass; first and second sets of both fixed and moveable capacitive electrode fingers, interdigitated with each other; the method comprising: applying PWM drive signals to the fixed fingers; sensing displacement of the proof mass and changing the mark:space ratio of the PWM drive signals, to provide a restoring force on the proof mass that balances the inertial force of the applied acceleration and maintains the proof mass at a null position; detecting when the mark:space ratio for the null position is beyond a predetermined upper or lower threshold; and further modulating the PWM drive signals by extending or reducing x pulses in every y cycles, where x>l and y>l, to provide an average mark:space ratio beyond the upper or lower threshold without further increasing or decreasing the mark length of the other pulses.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
G01P 21/00 - Testing or calibrating of apparatus or devices covered by the other groups of this subclass
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Sheard, John Keith
Faulkner, Nicholas Mark
Abstract
An inertial measurement system for a longitudinal projectile comprising :a first, roll gyro to be oriented substantially parallel to the longitudinal axis of the projectile;a second gyro and a third gyro with axes arranged with respect to the roll gyro such that they define a three dimensional coordinate system; a controller, arranged to: compute a current projectile attitude from the outputs of the first, second and third gyros, the computed attitude comprising a roll angle, a pitch angle and a yaw angle; compare the computed pitch and yaw angles with expected values for the pitch and yaw angles;calculate a roll angle error and a roll scale factor error based on the difference between the computed pitch and yaw angles and the expected pitch and yaw angles; and apply the calculated roll angle error and roll scale factor error to the output of the roll gyro. Calculating both roll angle error and roll scale factor error as corrections in the inertial measurement system allows much better control and correction of the calculated roll angle from the roll gyroscope even at high roll rates (e.g. 10-20 rotations per second). This correction system compensates for the large errors that can arise in inexpensive gyroscopes and therefore allows an accurate navigational system to be built with inexpensive components. No additional attitude sensors such as magnetometers are required, again reducing the cost and complexity of the system.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G05D 1/10 - Simultaneous control of position or course in three dimensions
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan Richard
Harish, Kiran
Abstract
A sensing structure for an accelerometer, comprising: a proof mass mounted to a support by flexible legs for in-plane movement in response to an applied acceleration along a sensing direction; the proof mass comprising a plurality of moveable electrode fingers extending substantially perpendicular to and spaced apart in the sensing direction; at least one pair of fixed capacitor electrodes comprising first and second sets of fixed electrode fingers extending substantially perpendicular to and spaced apart in the sensing direction; the first and second sets of fixed electrode fingers interdigitate with the moveable electrode fingers with a first and second offset in one direction and in the opposite direction, respectively, from a median line therebetween; wherein the proof mass is an outer frame surrounding the fixed capacitor electrodes, the flexible legs extending laterally inwardly from the proof mass to a central anchor.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
09 - Scientific and electric apparatus and instruments
Goods & Services
Inertial measurement units comprising accelerometers and gyros; inertial measurement units comprising accelerometers and gyros, for use in navigation and guidance systems and in tracking systems; structural parts and fittings for all the aforesaid goods.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Abstract
A capacitive accelerometer including: at least one additional fixed capacitor electrode with a plurality of additional fixed capacitive electrode fingers extending along the sensing direction. The proof mass comprises a plurality of moveable capacitive electrode fingers extending from the proof mass along the sensing direction and arranged to interdigitate with the plurality of additional fixed capacitive electrode fingers of the at least one additional fixed capacitor electrode. A means is provided for applying a voltage to the at least one additional fixed capacitor electrode to apply an electrostatic force to the plurality of moveable capacitive electrode fingers that acts to pull the proof mass towards the at least one further fixed capacitor electrode and thereby reduces the lateral spacings between the movable capacitive electrode fingers of the proof mass and the first and second sets of fixed capacitive electrode fingers that provide electrostatic forces for sensing purposes.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
B81B 5/00 - Devices comprising elements which are movable in relation to each other, e.g. comprising slidable or rotatable elements
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan Richard
Harish, Kiran
Abstract
A closed loop method of controlling a capacitive accelerometer (1) uses two servo loops. A Vcrit servo loop (32) uses an output signal (S2) modulated by a sine wave signal (S1). The Vcrit control signal adjusts the magnitude of the PWM drive signals applied to the fixed capacitor electrodes of the accelerometer (1), thereby optimising open loop gain.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/13 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Christopher Paul
Eley, Rebecka
Abstract
A vibratory ring structure is described which comprises a ring body and at least one ring electrode secured thereto, the or each ring electrode extending over a first angular extent and: being attached to the ring body over second angular extent, wherein the first angular extent is greater than the second angular extent.
G01C 19/56 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01P 15/14 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of gyroscopes
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
A sensor comprises a substrate (16) and a sensor element (20) anchored to the substrate (16), the substrate (16) and sensor element (20) being of dissimilar materials and having different coefficients of thermal expansion, the sensor element (20) and substrate (16) each having a generally planar face arranged substantially parallel to one another, the sensor further comprising a spacer (26), the spacer (26) being located so as to space at least part of the sensor element (20) from at least part of the substrate (16), wherein the spacer (26) is of considerably smaller area than the area of the smaller of face of the substrate (16) and that of the sensor element (20).
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Hawke, Tracey
Venables, Mark
Sturland, Ian
Eley, Rebecka
Abstract
A method of reactive ion etching a substrate 46 to form at least a first and a second etched feature (42, 44) is disclosed. The first etched feature (42) has a greater aspect ratio (depth:width) than the second etched feature (44). In a first etching stage the substrate (46) is etched so as to etch only said first feature (42) to a predetermined depth. Thereafter in a second etching stage, the substrate (46) is etched so as to etch both said first and said second features (42, 44) to a respective depth. A mask (40) may be applied to define apertures corresponding in shape to the features (42, 44). The region of the substrate (46) in which the second etched feature (44) is to be produced is selectively masked with a second maskant (50) during the first etching stage, The second maskant (50) is then removed prior to the second etching stage.
H01L 21/302 - Treatment of semiconductor bodies using processes or apparatus not provided for in groups to change the physical characteristics of their surfaces, or to change their shape, e.g. etching, polishing, cutting
H01L 21/461 - Treatment of semiconductor bodies using processes or apparatus not provided for in groups to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
H01L 29/06 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions
B81C 1/00 - Manufacture or treatment of devices or systems in or on a substrate
B81B 3/00 - Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Sheard, John Keith
Faulkner, Nicholas
Abstract
A device is described herein for determining azimuth comprising a MEMS inertial measurement unit (IMU), a GPS system comprising a GPS antenna and receiver, and a processor configured to receive data from said IMU and from said GPS system, said processor being configured to process said IMU data and said GPS data to derive a true north reference based on said IMU data and said GPS data. A method for determining azimuth is also described herein.
G01C 21/00 - NavigationNavigational instruments not provided for in groups
G01C 15/00 - Surveying instruments or accessories not provided for in groups
G01C 17/00 - CompassesDevices for ascertaining true or magnetic north for navigation or surveying purposes
G01C 21/10 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration
G01S 19/39 - Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
G01S 19/54 - Determining attitude using carrier phase measurementsDetermining attitude using long or short baseline interferometry
G01S 19/35 - Constructional details or hardware or software details of the signal processing chain
G01C 19/38 - Rotary gyroscopes for indicating a direction in the horizontal plane, e.g. directional gyroscopes with north-seeking action by other than magnetic means, e.g. gyrocompasses using earth's rotation
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Durston, Michael
Moriguchi, Takafumi
Araki, Ryuta
Abstract
A vibratory gyroscope is provided comprising a plurality of secondary pickoff transducers which are each sensitive to the secondary response mode, wherein: at least two of the secondary pickoff transducers comprise skew transducers designed to be sensitive to the primary mode which produce an induced quadrature signal in response thereto. A method of using the gyroscope is provided comprising the steps of arranging electrical connections between the secondary pickoff transducers and a pickoff amplifier so that in use the induced quadrature signal is substantially rejected by the amplifier in the absence of a fault condition, and the amplifier outputs an induced quadrature signal when a fault condition disconnects one of the skew transducers from the amplifier, and a comparator compares the quadrature output from the pickoff amplifier with a predetermined threshold value and provides a fault indication when the predetermined threshold is exceeded.
G01C 19/56 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Chris
Abstract
A MEMS sensor comprises a vibrating sensing structure formed from a semiconductor substrate layer (50). The semiconductor substrate layer (50) is mounted on a pedestal comprising an electrically insulating substrate layer (52) bonded to the semiconductor substrate (50) to form a rectangular sensor chip. The pedestal further comprises an electrically insulating spacer layer (54) for mounting the sensor chip to a housing. The electrically insulating spacer layer (54) is octagonal. When the vibrating sensing structure is excited into a cos 2θ vibration mode pair, the quadrature bias arising from any mode frequency split is not affected by changes in temperature as a result of the octagonal spacer layer (54).
G01C 19/00 - GyroscopesTurn-sensitive devices using vibrating massesTurn-sensitive devices without moving massesMeasuring angular rate using gyroscopic effects
G01P 3/44 - Devices characterised by the use of electric or magnetic means for measuring angular speed
G01P 9/00 - Measuring speed by using gyroscopic effect, e.g. using gas or using electron beam (using turn-sensitive devices or angular rate sensors using vibrating masses G01C 19/56)
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
G01C 19/5719 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Thomas, Henry
Abstract
An electronic device comprises a circuit substrate (5), and a moulded interconnect device (4) incorporating integral legs (8) to mount the interconnect device upon the substrate, the legs spacing at least one of the legs carrying a conducting track (20, 21, 22) to provide an electrical interconnection between the interconnect device and the substrate. The substrate (5) may comprise another moulded interconnect device and may be mounted upon a processor (3) and may include an electromagnetic shield (30) on its lower surface.
H01R 12/00 - Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocksCoupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structuresTerminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01S 19/35 - Constructional details or hardware or software details of the signal processing chain
H05K 1/14 - Structural association of two or more printed circuits
H05K 1/11 - Printed elements for providing electric connections to or between printed circuits
G01P 15/135 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by making use of contacts which are actuated by a movable inertial mass
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
09 - Scientific and electric apparatus and instruments
Goods & Services
Inertial measurement unit (IMU) used in air navigation for measuring velocity, orientation and gravitational forces, comprised of multi-axis angular rate data and acceleration sensors
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Malvern, Alan
Abstract
An accelerometer comprises a support, a first mass element and a second mass element, the mass elements being rigidly interconnected to form a unitary movable proof mass, the support being located at least in part between the first and second mass elements, a plurality of mounting legs securing the mass elements to the support member, at least two groups of movable capacitor fingers provided on the first mass element and interdigitated with corresponding groups of fixed capacitor fingers associated with the support, and at least two groups of movable capacitor fingers provided on the second mass element and interdigitated with corresponding groups of fixed capacitor fingers associated with the support.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/18 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration in two or more dimensions
G01P 15/08 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher Paul
Eley, Rebecca
Abstract
A vibratory ring structure is described which comprises a ring body and at least one ring electrode secured thereto, the or each ring electrode extending over a first angular extent and: being attached to the ring body over second angular extent, wherein the first angular extent is greater than the second angular extent.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
A method of tuning a vibratory ring structure is described which comprises determining an angular spacing for a pair of fine tuning holes (16) of substantially the same size, located on or near the neutral axis of the vibratory ring structure (10), the angular offset being selected to reduce to an acceptable level the frequency split between the target normal mode and a further normal mode which Is angularly offset relative to the target normal mode, and forming the pair of fine tuning holes (16) in the vibratory ring structure (10) at the determined angular spacing, A ring structure, for example a gyroscope, tuned or balanced in this manner is also disclosed.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
A silicon MEMS gyroscope is described having a ring or hoop-shaped resonator. The resonator is formed by a Deep Reactive Ion Fitch technique and is formed with slots extending around the circumference of the resonator on either side of the neutral axis of the resonator. The slots improve the Quality Factor Q of the gyroscope without affecting the resonant frequency of the resonator.
G01C 19/56 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
G01C 19/5719 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
A sensor comprises a substrate (16) and a sensor element (20) anchored to the substrate (16), the substrate (16) and sensor element (20) being of dissimilar materials and having different coefficients of thermal expansion, the sensor element (20) and substrate (16) each having a generally planar face arranged substantially parallel to one another, the sensor further comprising a spacer (26), the spacer (26) being located so as to space at least part of the sensor element (20) from at least part of the substrate (16), wherein the spacer (26) is of considerably smaller area than the area of the smaller of face of the substrate (16) and that of the sensor element (20).
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
91.
ELECTRONIC DEVICE COMPRISING A MOULDED INTERCONNECT DEVICE
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Thomas, Henry
Abstract
An electronic device comprises a circuit substrate, and a moulded interconnect device incorporating integral legs to mount the interconnect device upon the substrate, the legs spacing at least part of the interconnect device from the substrate, at least one of the legs carrying a conducting track to provide an electrical interconnection between the interconnect device and the substrate.
G01C 21/16 - NavigationNavigational instruments not provided for in groups by using measurement of speed or acceleration executed aboard the object being navigatedDead reckoning by integrating acceleration or speed, i.e. inertial navigation
G01S 19/35 - Constructional details or hardware or software details of the signal processing chain
H05K 1/14 - Structural association of two or more printed circuits
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
SUMITOMO PRECISION PRODUCTS COMPANY LIMITED (Japan)
Inventor
Durston, Michael
Moriguchi, Takafumi
Araki, Ryuta
Abstract
A vibratory gyroscope is provided comprising a plurality of secondary pickoff transducers which are each sensitive to the secondary response mode, wherein: at least two of the secondary pickoff transducers comprise skew transducers designed to be sensitive to the primary mode which produce an induced quadrature signal in response thereto. A method of using the gyroscope is provided comprising the steps of arranging electrical connections between the secondary pickoff transducers and a pickoff amplifier so that in use the induced quadrature signal is substantially rejected by the amplifier in the absence of a fault condition, and the amplifier outputs an induced quadrature signal when a fault condition disconnects one of the skew transducers from the amplifier, and a comparator compares the quadrature output from the pickoff amplifier with a predetermined threshold value and provides a fault indication when the predetermined threshold is exceeded.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
93.
VARIABLE CAPACITANCE ACCELEROMETER WITH MEANDERING FLEXURES
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Snell, Louise
Westbury, Steven
Abstract
An accelerometer comprises a support (12), a proof mass (14) supported for movement relative to the support (12) by a plurality of mounting legs (16), a plurality of fixed capacitor fingers associated with the support (12) and a plurality of movable capacitor fingers associated with the proof mass (14), the fixed capacitor fingers being interdigitated with the movable capacitor fingers, the mounting legs (16) being of serpentine shape, each mounting leg (16) comprising at least a first generally straight section (16a), a second generally straight section (16a), and an end section (16b) of generally U-shaped form interconnecting the first and second generally straight sections (16a), wherein the thickness Te of the end section (16b) is greater than the thickness Tc of a central part (16c) of both of the first and second generally straight sections (16a).
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Abstract
An accelerometer comprises a support, a first mass element and a second mass element, the mass elements being rigidly interconnected to form a unitary movable proof mass, the support being located at least in part between the first and second mass elements, a plurality of mounting legs securing the mass elements to the support member, at least two groups of movable capacitor fingers provided on the first mass element and interdigitated with corresponding groups of fixed capacitor fingers associated with the support, and at least two groups of movable capacitor fingers provided on the second mass element and interdigitated with corresponding groups of fixed capacitor fingers associated with the support.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
G01P 15/18 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration in two or more dimensions
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Fell, Christopher, Paul
Abstract
A silicon MEMS gyroscope is described having a ring or hoop-shaped resonator (1). The resonator (1) is formed by a Deep Reactive Ion Etch technique and is formed with slots (5) extending around the circumference of the resonator (1) on either side of the neutral axis (4) of the resonator (1). The slots (5) improve the Quality Factor Q of the gyroscope without affecting the resonant frequency of the resonator.
G01C 19/5684 - Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators the devices involving a micromechanical structure
09 - Scientific and electric apparatus and instruments
Goods & Services
Measuring apparatus and instruments; navigational apparatus
and instruments; inertial measurement units; angular rate
sensors; gyroscopes; global positioning apparatus and
instruments; parts and fittings for all the aforesaid goods.
09 - Scientific and electric apparatus and instruments
Goods & Services
Measuring apparatus and instruments; navigational apparatus
and instruments; inertial measurement units; angular rate
sensors; gyroscopes; global positioning apparatus and
instruments; parts and fittings for all the aforesaid goods.
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Christopher
Eley, Rebecca
Abstract
An exemplary vibrating structure gyroscope includes a ring structure, an external frame and a flexible support including a pair of symmetrical compliant legs arranged to retain the ring structure within the external frame. A metal track is provided on an upper surface of the ring structure, the compliant legs and the external frame, over an insulating surface oxide layer. Each flexible support is arranged to carry a metal track associated with a single drive or pick-off transducer. The metal track is repeated for eight circuits, one circuit for each transducer. Each circuit of metal track associated with a transducer begins at a first bond-pad on the external frame, runs along a first compliant leg, across an eighth segment of the ring structure and back along the other compliant leg to a second bond-pad on the external frame.
ATLANTIC INERTIAL SYSTEMS LIMITED (United Kingdom)
Inventor
Malvern, Alan
Abstract
An accelerometer open loop control system comprising a variable capacitance accelerometer having a proof mass movable between fixed capacitor plates, drive signals applied to the capacitor plates, a charge amplifier amplifying an accelerometer output signal representing applied acceleration, and an autoranging facility for monitoring the output signal, and for adjusting the drive signals in dependence on the output signal in order to restrict the amplitude of the accelerometer output signal, thus maintaining sensitivity of the accelerometer while permitting response to a wide range of g values. Corrections are applied by means of look up tables to compensate for inaccuracies arising from movement of the proof mass and temperature variations.
G01P 15/125 - Measuring accelerationMeasuring decelerationMeasuring shock, i.e. sudden change of acceleration by making use of inertia forces with conversion into electric or magnetic values by capacitive pick-up
Atlantic Inertial Systems Limited (United Kingdom)
Inventor
Fell, Christopher Paul
Abstract
p is arranged to generate a predetermined electrostatic force, which acts upon the ring structure 42 to locally adjust the stiffness of the ring structure 42.
p reduces the effect of variation a capacitive gap with ring structure 42 due to temperature change, thereby improving the scalefactor of the gyroscope structure.