This disclosure relates to selectively performing a read with increased accuracy, such as a self-reference read, from a memory. In one aspect, data is read from memory cells, such as magnetoresistive random access memory (MRAM) cells, of a memory array. In response to detecting a condition associated with reading from the memory cells, a self-reference read can be performed from at least one of the memory cells. For instance, the condition can indicate that data read from the memory cells is uncorrectable via decoding of error correction codes (ECC). Selectively performing self-reference reads can reduce power consumption and/or latency associated with reading from the memory compared to always performing self-reference reads.
G06F 11/07 - Responding to the occurrence of a fault, e.g. fault tolerance
G11C 29/04 - Detection or location of defective memory elements
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
G11C 29/02 - Detection or location of defective auxiliary circuits, e.g. defective refresh counters
2.
RESISTIVE MEMORY ARCHITECTURES WITH MULTIPLE MEMORY CELLS PER ACCESS DEVICE
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
3.
Apparatus and methods to provide power management for memory devices
An apparatus, such as a nonvolatile solid-state memory device, may, in some implementations, include access line bias circuitry to set a bias level associated with a deselected access line(s) of a memory core in response to mode information. In one approach, access line bias circuitry may use linear down regulation to change a voltage level on deselected access lines of a memory core. A memory access device, such as a host processor, may be provided that is capable of dynamically setting a mode of operation of a memory core of a memory device in order to manage power consumption of the memory. Other apparatuses and methods are also provided.
A variable resistance memory array, programming a variable resistance memory element and methods of forming the array. A variable resistance memory array is formed with a plurality of word line transistors surrounding each phase change memory element. To program a selected variable resistance memory element, all of the bitlines are grounded or biased at the same voltage. A top electrode select line that is in contact with the selected variable resistance memory element is selected. The word line having the word line transistors surrounding the selected variable resistance memory element are turned on to supply programming current to the element. Current flows from the selected top electrode select line through the variable resistance memory element into the common source/drain region of the surrounding word line transistors, across the transistors to the nearest bitline contacts. The word lines are patterned in various lattice configurations.
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
A chalcogenide-based programmable conductor memory device and method of forming the device, wherein a nanoparticle is provided between an electrode and a chalcogenide glass region. The method of forming the nanoparticle utilizes a template over the electrode or random deposition of the nanoparticle.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
8.
Selective reading of memory with improved accuracy
This disclosure relates to selectively performing a read with increased accuracy, such as a self-reference read, from a memory. In one aspect, data is read from memory cells, such as magnetoresistive random access memory (MRAM) cells, of a memory array. In response to detecting a condition associated with reading from the memory cells, a self-reference read can be performed from at least one of the memory cells. For instance, the condition can indicate that data read from the memory cells is uncorrectable via decoding of error correction codes (ECC). Selectively performing self-reference reads can reduce power consumption and/or latency associated with reading from the memory compared to always performing self-reference reads.
G06F 11/07 - Responding to the occurrence of a fault, e.g. fault tolerance
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
G11C 29/04 - Detection or location of defective memory elements
G11C 29/02 - Detection or location of defective auxiliary circuits, e.g. defective refresh counters
9.
Apparatus and methods to provide power management for memory devices
An apparatus, such as a nonvolatile solid-state memory device, may, in some implementations, include access line bias circuitry to set a bias level associated with a deselected access line(s) of a memory core in response to mode information. In one approach, access line bias circuitry may use linear down regulation to change a voltage level on deselected access lines of a memory core. A memory access device, such as a host processor, may be provided that is capable of dynamically setting a mode of operation of a memory core of a memory device in order to manage power consumption of the memory. Other apparatuses are also provided.
A variable resistance memory array, programming a variable resistance memory element and methods of forming the array. A variable resistance memory array is formed with a plurality of word line transistors surrounding each phase change memory element. To program a selected variable resistance memory element, all of the bitlines are grounded or biased at the same voltage. A top electrode select line that is in contact with the selected variable resistance memory element is selected. The word line having the word line transistors surrounding the selected variable resistance memory element are turned on to supply programming current to the element. Current flows from the selected top electrode select line through the variable resistance memory element into the common source/drain region of the surrounding word line transistors, across the transistors to the nearest bitline contacts. The word lines are patterned in various lattice configurations.
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
G11C 11/4097 - Bit-line organisation, e.g. bit-line layout, folded bit lines
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
11.
Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
12.
Memory cell and memory cell array having an electrically floating body transistor, and methods of operating same
Techniques are disclosed for writing, programming, holding, maintaining, sampling, sensing, reading and/or determining a data state of a memory cell of a memory cell array, such as a memory cell array having a plurality of memory cells each comprising an electrically floating body transistor. In one aspect, the techniques are directed to controlling and/or operating a semiconductor memory cell having an electrically floating body transistor in which an electrical charge is stored in the body region of the electrically floating body transistor. The techniques may employ bipolar transistor currents to control, write and/or read a data state in such a memory cell. In this regard, the techniques may employ a bipolar transistor current to control, write and/or read a data state in/of the electrically floating body transistor of the memory cell.
G11C 11/34 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices
G11C 11/404 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
H01L 27/108 - Dynamic random access memory structures
H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate
G11C 11/4067 - Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the bipolar type
H01L 27/12 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
13.
Integrated circuit having memory cell array including barriers, and method of manufacturing same
An integrated circuit device having (i) a memory cell array which includes a plurality of memory cells arranged in a matrix of rows and columns, wherein each memory cell includes at least one transistor having a gate, gate dielectric and first, second and body regions, wherein: (i) the body region of each transistor is electrically floating and (ii) the transistors of adjacent memory cells have a common first region and/or a common second region. Each common first region and/or second regions of transistors of adjacent memory cells includes a barrier disposed therein and/or therebetween, wherein each barrier provides a discontinuity in the common regions and/or includes one or more electrical characteristics that are different from one or more corresponding electrical characteristics of the common regions.
H01L 27/105 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
G11C 11/404 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
H01L 21/84 - Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
H01L 27/108 - Dynamic random access memory structures
H01L 27/12 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate
H01L 29/16 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System in uncombined form
H01L 29/20 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
14.
Memory devices including phase change material elements
Memory devices having a plurality of memory cells, with each memory cell including a phase change material having a laterally constricted portion thereof. The laterally constricted portions of adjacent memory cells are vertically offset and positioned on opposite sides of the memory device. Also disclosed are memory devices having a plurality of memory cells, with each memory cell including first and second electrodes having different widths. Adjacent memory cells have the first and second electrodes offset on vertically opposing sides of the memory device. Methods of forming the memory devices are also disclosed.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
15.
Semiconductor memory devices including a memory array and related method incorporating different biasing schemes
Memory devices provide a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also provided.
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
16.
Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
17.
Methods of operating memory devices and electronic systems
Memory devices having memory cells comprising variable resistance material include an electrode comprising a single nanowire. Various methods may be used to form such memory devices, and such methods may comprise establishing contact between one end of a single nanowire and a volume of variable resistance material in a memory cell. Electronic systems include such memory devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
18.
Semiconductor memory devices including a memory array and related method incorporating different biasing schemes
Memory devices provide a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also provided.
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
19.
Apparatus and methods to provide power management for memory devices
An apparatus, such as a nonvolatile solid-state memory device, may, in some implementations, include access line bias circuitry to set a bias level associated with a deselected access line(s) of a memory core in response to mode information. In one approach, access line bias circuitry may use linear down regulation to change a voltage level on deselected access lines of a memory core. A memory access device, such as a host processor, may be provided that is capable of dynamically setting a mode of operation of a memory core of a memory device in order to manage power consumption of the memory. Other apparatuses and methods are also provided.
A memory circuit, including a memory array (such as a cross-point array), may include circuit elements that may function both as selection elements/drivers and de-selection elements/drivers. A selection/de-selection driver may be used to provide both a selection function as well as an operation function. The operation function may include providing sufficient currents and voltages for WRITE and/or READ operations in the memory array. When the de-selection path is used for providing the operation function, highly efficient cross-point implementations can be achieved. The operation function may be accomplished by circuit manipulation of a de-selection supply and/or de-selection elements.
Memory devices having a plurality of memory cells, with each memory cell including a phase change material having a laterally constricted portion thereof. The laterally constricted portions of adjacent memory cells are vertically offset and positioned on opposite sides of the memory device. Also disclosed are memory devices having a plurality of memory cells, with each memory cell including first and second electrodes having different widths. Adjacent memory cells have the first and second electrodes offset on vertically opposing sides of the memory device. Methods of forming the memory devices are also disclosed.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
22.
Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
23.
Method, system, and device for phase change memory switch wall cell with approximately horizontal electrode contact cross references
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
24.
Methods of forming memory devices having electrodes comprising nanowires
Memory devices having memory cells comprising variable resistance material include an electrode comprising a single nanowire. Various methods may be used to form such memory devices, and such methods may comprise establishing contact between one end of a single nanowire and a volume of variable resistance material in a memory cell. Electronic systems include such memory devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
27.
Apparatuses and methods for efficient write in a cross-point array
A memory circuit, including a memory array (such as a cross-point array), may include circuit elements that may function both as selection elements/drivers and de-selection elements/drivers. A selection/de-selection driver may be used to provide both a selection function as well as an operation function. The operation function may include providing sufficient currents and voltages for WRITE and/or READ operations in the memory array. When the de-selection path is used for providing the operation function, highly efficient cross-point implementations can be achieved. The operation function may be accomplished by circuit manipulation of a de-selection supply and/or de-selection elements.
Memory devices provide a plurality of memory cells, each memory cell including a memory element and a selection device. A plurality of first (e.g., row) address lines can be adjacent (e.g., under) a first side of at least some cells of the plurality. A plurality of second (e.g., column) address lines extend across the plurality of row address lines, each column address line being adjacent (e.g., over) a second, opposing side of at least some of the cells. Control circuitry can be configured to selectively apply a read voltage or a write voltage substantially simultaneously to the address lines. Systems including such memory devices and methods of accessing a plurality of cells at least substantially simultaneously are also provided.
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
A thin-film memory may include a thin-film transistor-free address decoder in conjunction with thin-film memory elements to yield an all-thin-film memory. Such a thin-film memory excludes all single-crystal electronic devices and may be formed, for example, on a low-cost substrate, such as fiberglass, glass or ceramic. The memory may be configured for operation with an external memory controller.
Some embodiments include vertical stacks of memory units, with individual memory units each having a memory element, a wordline, a bitline and at least one diode. The memory units may correspond to cross-point memory, and the diodes may correspond to band-gap engineered diodes containing two or more dielectric layers sandwiched between metal layers. Tunneling properties of the dielectric materials and carrier injection properties of the metals may be tailored to engineer desired properties into the diodes. The diodes may be placed between the bitlines and the memory elements, or may be placed between the wordlines and memory elements. Some embodiments include methods of forming cross-point memory arrays. The memory arrays may contain vertical stacks of memory unit cells, with individual unit cells containing cross-point memory and at least one diode.
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 27/102 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
H01L 21/768 - Applying interconnections to be used for carrying current between separate components within a device
H01L 23/00 - Details of semiconductor or other solid state devices
H01L 23/528 - Layout of the interconnection structure
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
31.
Variable resistance memory with lattice array using enclosing transistors
A variable resistance memory array, programming a variable resistance memory element and methods of forming the array. A variable resistance memory array is formed with a plurality of word line transistors surrounding each phase change memory element. To program a selected variable resistance memory element, all of the bitlines are grounded or biased at the same voltage. A top electrode select line that is in contact with the selected variable resistance memory element is selected. The word line having the word line transistors surrounding the selected variable resistance memory element are turned on to supply programming current to the element. Current flows from the selected top electrode select line through the variable resistance memory element into the common source/drain region of the surrounding word line transistors, across the transistors to the nearest bitline contacts. The word lines are patterned in various lattice configurations.
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
G11C 11/40 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices using transistors
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 11/4097 - Bit-line organisation, e.g. bit-line layout, folded bit lines
32.
Resistance variable memory device with nanoparticle electrode and method of fabrication
A chalcogenide-based programmable conductor memory device and method of forming the device, wherein a nanoparticle is provided between an electrode and a chalcogenide glass region. The method of forming the nanoparticle utilizes a template over the electrode or random deposition of the nanoparticle.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
A thin-film memory may include a thin-film transistor-free address decoder in conjunction with thin-film memory elements to yield an all-thin-film memory. Such a thin-film memory excludes all single-crystal electronic devices and may be formed, for example, on a low-cost substrate, such as fiberglass, glass or ceramic. The memory may be configured for operation with an external memory controller.
The present disclosure includes a high density resistive random access memory (RRAM) device, as well as methods of fabricating a high density RRAM device. One method of forming an RRAM device includes forming a resistive element having a metal-metal oxide interface. Forming the resistive element includes forming an insulative material over the first electrode, and forming a via in the insulative material. The via is conformally filled with a metal material, and the metal material is planarized to within the via. A portion of the metal material within the via is selectively treated to create a metal-metal oxide interface within the via. A second electrode is formed over the resistive element.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
The apparatuses and methods described herein may operate to measure a voltage difference between a selected access line and a selected sense line associated with a selected cell of a plurality of memory cells of a memory array. The voltage difference may be compared with a reference voltage specified for a memory operation. A selection voltage(s) applied to the selected cell for the memory operation may be adjusted responsive to the comparison, such as to dynamically compensate for parasitic voltage drop.
A memory device that, in certain embodiments, includes a memory element coupled to a bit-line and a quantizing circuit coupled to the memory element via the bit-line. In some embodiments, the quantizing circuit includes an analog-to-digital converter having an input and output and a digital filter that includes memory. The input of the analog-to-digital converter may be coupled to the bit-line, and the output of the analog-to-digital converter may be coupled to the digital filter.
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 7/10 - Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
An apparatus, such as a nonvolatile solid-state memory device, may, in some implementations, include access line bias circuitry to set a bias level associated with a deselected access line(s) of a memory core in response to mode information. In one approach, access line bias circuitry may use linear down regulation to change a voltage level on deselected access lines of a memory core. A memory access device, such as a host processor, may be provided that is capable of dynamically setting a mode of operation of a memory core of a memory device in order to manage power consumption of the memory. Other apparatuses and methods are also provided.
A pixel interpolation apparatus, an imaging apparatus, a program, and an integrated circuit allow appropriate pixel interpolation processing on an image signal obtained by a single-chip image sensor having a WRGB color filter array. An imaging apparatus includes an imaging unit, a signal processing unit, and a pixel interpolation processing unit. The apparatus calculates a degree of correlation for pairs in two orthogonal directions for an image signal (Raw image) obtained by the imaging unit including a single-chip image sensor having a WRGB color filter array using pixel data in an area around a target pixel, using the correlation degree as a determination criterion in the interpolation processing. The imaging apparatus selectively uses a luminance signal generated from R, G, and B-component signals or a luminance signal generated from a W-component signal to perform pixel interpolation processing with higher accuracy and obtain a YCbCr signal with higher accuracy.
This disclosure relates to selectively performing a read with increased accuracy, such as a self-reference read, from a memory. In one aspect, data is read from memory cells, such as magnetoresistive random access memory (MRAM) cells, of a memory array. In response to detecting a condition associated with reading from the memory cells, a self-reference read can be performed from at least one of the memory cells. For instance, the condition can indicate that data read from the memory cells is uncorrectable via decoding of error correction codes (ECC). Selectively performing self-reference reads can reduce power consumption and/or latency associated with reading from the memory compared to always performing self-reference reads.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G06F 11/07 - Responding to the occurrence of a fault, e.g. fault tolerance
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
G11C 29/02 - Detection or location of defective auxiliary circuits, e.g. defective refresh counters
G11C 29/04 - Detection or location of defective memory elements
41.
Immunity of phase change material to disturb in the amorphous phase
Disturb from the reset to the set state may be reduced by creating an amorphous phase that is substantially free of crystal nuclei when programming the reset state in a phase change memory. In some embodiments, this can be achieved by using a current or a voltage to program that exceeds the threshold voltage of the phase change memory element, but does not exceed a safe current voltage which would cause a disturb.
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 16/34 - Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
G11C 29/04 - Detection or location of defective memory elements
The present disclosure includes memory cell structures and method of forming the same. One such memory cell includes a first electrode having sidewalls angled less than 90 degrees in relation to a bottom surface of the first electrode, a second electrode, including an electrode contact portion of the second electrode, having sidewalls angled less than 90 degrees in relation to the bottom surface of the first electrode, wherein the second electrode is over the first electrode, and a storage element between the first electrode and the electrode contact portion of the second electrode.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
Various embodiments include at least one resistance change memory (RCM) cell, In one embodiment, three or more pairs of electrical contacts are coupled to the at least one RCM cell. A first portion of the pairs are arranged laterally to one another in a first grouping and a second opposing portion of the pairs are arranged laterally to one another in a second grouping. A memory cell material is disposed between opposing sides of the pairs of the three or more electrical contacts. The memory cell material is configured to form a conductive pathway between one or more of the pairs, with each of the three or more pairs being configured to be accessed individually for at least one operation including program, erase, and read operations. Additional apparatuses and methods are described.
G11C 5/02 - Disposition of storage elements, e.g. in the form of a matrix array
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G11C 11/50 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using actuation of electric contacts to store the information
G11C 8/00 - Arrangements for selecting an address in a digital store
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 8/14 - Word line organisationWord line lay-out
G11C 19/00 - Digital stores in which the information is moved stepwise, e.g. shift registers
44.
Apparatuses and methods for efficient write in a cross-point array
A memory circuit, including a memory array (such as a cross-point array), may include circuit elements that may function both as selection elements/drivers and de-selection elements/drivers. A selection/de-selection driver may be used to provide both a selection function as well as an operation function. The operation function may include providing sufficient currents and voltages for WRITE and/or READ operations in the memory array. When the de-selection path is used for providing the operation function, highly efficient cross-point implementations can be achieved. The operation function may be accomplished by circuit manipulation of a de-selection supply and/or de-selection elements.
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
46.
Resistive memory architectures with multiple memory cells per access device
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
47.
Memory devices including phase change material elements
Memory devices having a plurality of memory cells, with each memory cell including a phase change material having a laterally constricted portion thereof. The laterally constricted portions of adjacent memory cells are vertically offset and positioned on opposite sides of the memory device. Also disclosed are memory devices having a plurality of memory cells, with each memory cell including first and second electrodes having different widths. Adjacent memory cells have the first and second electrodes offset on vertically opposing sides of the memory device. Methods of forming the memory devices are also disclosed.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
48.
Techniques for providing a semiconductor memory device
Techniques for providing a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. Each memory cell including a first region, a second region, and a body region capacitively coupled to at least one word line and disposed between the first region and the second region. Each memory cell also including a third region, wherein the third region may be doped differently than the first region, the second region, and the body region.
G11C 11/34 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices
H01L 27/108 - Dynamic random access memory structures
H01L 27/105 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
H01L 27/12 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate
G11C 7/00 - Arrangements for writing information into, or reading information out from, a digital store
H01L 29/08 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified, or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
H01L 29/10 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified, or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
49.
Memory cells having a plurality of resistance variable materials
Resistance variable memory cells having a plurality of resistance variable materials and methods of operating and forming the same are described herein. As an example, a resistance variable memory cell can include a plurality of resistance variable materials located between a plug material and an electrode material. The resistance variable memory cell also includes a first conductive material that contacts the plug material and each of the plurality of resistance variable materials and a second conductive material that contacts the electrode material and each of the plurality of resistance variable materials.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
50.
Apparatus and methods for forming a memory cell using charge monitoring
Apparatus and methods of forming a memory cell are described. In one such method, a forming charge applied to a memory cell, such as a Resistive RAM (RRAM) memory cell, is monitored to determine the progress of the forming the cell. If the cell is consuming charge too slowly, a higher voltage can be applied. If the cell is consuming charge too quickly, a lower voltage can be applied. The charge may be monitored by charging a capacitor to a certain level, then monitoring the discharge rate of the capacitor though the cell. The monitoring may use comparators to measure the charge. The monitoring may also use an analog to digital converter to perform the monitoring.
A magnetic cell structure including a nonmagnetic bridge, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, and a nonmagnetic bridge electrically connecting the free layer and the pinned layer. The shape and/or configuration of the nonmagnetic bridge directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer of the structure is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
H01L 43/12 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
Spin torque transfer magnetic random access memory devices configured to be programmed unidirectionally and methods of programming such devices. The devices include memory cells having two pinned layers and a free layer therebetween. By utilizing two pinned layers, the spin torque effect on the free layer from each of the two pinned layers, respectively, allows the memory cells to be programmed with unidirectional currents.
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
H01L 43/02 - Devices using galvano-magnetic or similar magnetic effects; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof - Details
53.
Memory devices having electrodes comprising nanowires
Memory devices having memory cells comprising variable resistance material include an electrode comprising a single nanowire. Various methods may be used to form such memory devices, and such methods may comprise establishing contact between one end of a single nanowire and a volume of variable resistance material in a memory cell. Electronic systems include such memory devices.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
Techniques for providing a direct injection semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a method for biasing a direct injection semiconductor memory device. The method may comprise applying a first voltage potential to a first N-doped region via a bit line and applying a second voltage potential to a second N-doped region via a source line. The method may also comprise applying a third voltage potential to a word line, wherein the word line is spaced apart from and capacitively coupled to a body region that is electrically floating and disposed between the first N-doped region and the second N-doped region. The method may further comprise applying a fourth voltage potential to a P-type substrate via a carrier injection line.
H01L 27/06 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
G11C 5/02 - Disposition of storage elements, e.g. in the form of a matrix array
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
G11C 8/08 - Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
G11C 11/4074 - Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
G11C 11/4094 - Bit-line management or control circuits
G11C 7/00 - Arrangements for writing information into, or reading information out from, a digital store
Some embodiments include memory devices having a wordline, a bitline, a memory element selectively configurable in one of three or more different resistive states, and a diode configured to allow a current to flow from the wordline through the memory element to the bitline responsive to a voltage being applied across the wordline and the bitline and to decrease the current if the voltage is increased or decreased. Some embodiments include memory devices having a wordline, a bitline, memory element selectively configurable in one of two or more different resistive states, a first diode configured to inhibit a first current from flowing from the bitline to the wordline responsive to a first voltage, and a second diode comprising a dielectric material and configured to allow a second current to flow from the wordline to the bitline responsive to a second voltage.
G11C 11/36 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices using diodes, e.g. as threshold elements
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 5/02 - Disposition of storage elements, e.g. in the form of a matrix array
G11C 11/34 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices
Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
58.
Memory quality monitor based compensation method and apparatus
In one embodiment, an encoder reads a set of data from memory cells to obtain retrieved data influenced by one or more distortion mechanisms as a result of having been stored. A quality metric is generated responsive to the retrieved data that changes in value responsive to differences between the user data and the associated retrieved data. A quality monitor establishes a relationship between a current value of the quality metric and a threshold value and monitors the relationship as being indicative of a degradation of the quality of the retrieved data, and selectively initiates an error response. In another embodiment, a correction value is iterated through a set of values as a quality metric is monitored such that the value of the quality metric which most closely approaches the value of the quality metric immediately subsequent to an initial writing of the data can be selected.
H03M 13/03 - Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
G06F 11/10 - Adding special bits or symbols to the coded information, e.g. parity check, casting out nines or elevens
H03M 13/11 - Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
H03M 13/15 - Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
H03M 13/37 - Decoding methods or techniques, not specific to the particular type of coding provided for in groups
H03M 13/41 - Sequence estimation, i.e using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
G06F 11/08 - Error detection or correction by redundancy in data representation, e.g. by using checking codes
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
59.
Apparatuses and methods for efficient write in a cross-point array
A memory circuit, including a memory array (such as a cross-point array), may include circuit elements that may function both as selection elements/drivers and de-selection elements/drivers. A selection/de-selection driver may be used to provide both a selection function as well as an operation function. The operation function may include providing sufficient currents and voltages for WRITE and/or READ operations in the memory array. When the de-selection path is used for providing the operation function, highly efficient cross-point implementations can be achieved. The operation function may be accomplished by circuit manipulation of a de-selection supply and/or de-selection elements.
Vertical transistor phase change memory and methods of processing phase change memory are described herein. One or more methods include forming a dielectric on at least a portion of a vertical transistor, forming an electrode on the dielectric, and forming a vertical strip of phase change material on a portion of a side of the electrode and on a portion of a side of the dielectric extending along the electrode and the dielectric into contact with the vertical transistor.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
61.
Memory structures, memory arrays, methods of forming memory structures and methods of forming memory arrays
Some embodiments include methods of forming memory structures. An electrically insulative line is formed over a base. Electrode material is deposited over the line and patterned to form a pair of bottom electrodes along the sidewalls of the line. Programmable material is formed over the bottom electrodes, and a top electrode is formed over the programmable material. The bottom electrodes may each contain at least one segment which extends at angle of from greater than 0° to less than or equal to about 90° relative to a planar topography of the base. Some embodiments include memory structures having a bottom electrode extending upwardly from a conductive contact to a programmable material, with the bottom electrode having a thickness of less than or equal to about 10 nanometers. Some embodiments include memory arrays and methods of forming memory arrays.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
62.
Apparatus and methods to provide power management for memory devices
An apparatus, such as a nonvolatile solid-state memory device, may, in some implementations, include access line bias circuitry to set a bias level associated with a deselected access line(s) of a memory core in response to mode information. In one approach, access line bias circuitry may use linear down regulation to change a voltage level on deselected access lines of a memory core. A memory access device, such as a host processor, may be provided that is capable of dynamically setting a mode of operation of a memory core of a memory device in order to manage power consumption of the memory. Other apparatuses and methods are also provided.
Embodiments of a manufacturing process for recessed gate devices on silicon-on-insulator (SOI) substrate with self-aligned lateral isolation are described. This allows the creation of true in-pitch recessed gate devices without requiring an extra isolation dimension. A lateral isolation trench is formed between pairs of recessed gate devices by etching the silicon-on-insulator area down to a buried oxide layer on which the silicon-on-insulator layer is formed. The position of the trench is self-aligned and defined by the gate width and the dimension of spacers disposed on either side of the gate. The isolation trench is filled with a dielectric material and then etched back to the middle of the SOI body and the remaining volume is filled with a doped conductive material. The doped conductor is subject to a thermal cycle to create source and drain regions of the device through out-diffusion of the doped material.
H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate
H01L 21/84 - Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
H01L 27/108 - Dynamic random access memory structures
H01L 21/225 - Diffusion of impurity materials, e.g. doping materials, electrode materials, into, or out of, a semiconductor body, or between semiconductor regionsRedistribution of impurity materials, e.g. without introduction or removal of further dopant using diffusion into, or out of, a solid from or into a solid phase, e.g. a doped oxide layer
64.
Immunity of phase change material to disturb in the amorphous phase
Disturb from the reset to the set state may be reduced by creating an amorphous phase that is substantially free of crystal nuclei when programming the reset state in a phase change memory. In some embodiments, this can be achieved by using a current or a voltage to program that exceeds the threshold voltage of the phase change memory element, but does not exceed a safe current voltage which would cause a disturb.
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 16/34 - Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
G11C 29/04 - Detection or location of defective memory elements
Techniques for reducing disturbance in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device having reduced disturbance. The semiconductor memory device may comprise a plurality of memory cells arranged in arrays of rows and columns. The semiconductor memory device may also comprise a plurality of data sense amplifiers, coupled to the plurality of memory cells, configured to perform one or more operations during an operation/access cycle, wherein the operation/access cycle may comprise an operation segment and a disturbance recovery segment.
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 27/102 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
This disclosure relates to selectively performing a read with increased accuracy, such as a self-reference read, from a memory. In one aspect, data is read from memory cells, such as magnetoresitive random access memory (MRAM) cells, of a memory array. In response to detecting a condition associated with reading from the memory cells, a self-reference read can be performed from at least one of the memory cells. For instance, the condition can indicate that data read from the memory cells is uncorrectable via decoding of error correction codes (ECC). Selectively performing self-reference reads can reduce power consumption and/or latency associated with reading from the memory compared to always performing self-reference reads.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
69.
Encapsulated phase change cell structures and methods
Methods and devices associated with phase change cell structures are described herein. In one or more embodiments, a method of forming a phase change cell structure includes forming a substrate protrusion that includes a bottom electrode, forming a phase change material on the substrate protrusion, forming a conductive material on the phase change material, and removing a portion of the conductive material and a portion of the phase change material to form an encapsulated stack structure.
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
70.
Memory architecture and cell design employing two access transistors
Some embodiments include an improved memory array architecture and memory cell design. In one of such embodiments, a memory cell may comprise a memory element to store a logic state and two access transistors coupled to the memory element to access the logic state of the memory element. Other embodiments are described.
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
G11C 17/16 - Read-only memories programmable only onceSemi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
71.
Methods of forming germanium-antimony-tellurium materials and chalcogenide materials
Methods of forming a material include exposing a substrate to a first germanium-containing compound and a second, different germanium-containing compound; exposing the substrate to a first antimony-containing compound and a second, different antimony-containing compound; and exposing the substrate to a first tellurium-containing compound and a second, different tellurium-containing compound. Methods of forming chalcogenide materials include exposing a substrate to a first precursor comprising a reactive precursor of a first metal and a co-reactive precursor of the first metal, the reactive precursor and the co-reactive precursor each having at least one ligand coordinated to an atom of the first metal, wherein the at least one ligand of the co-reactive precursor is different from the at least one ligand of the reactive precursor. The substrate is also exposed to a reactive antimony precursor and a co-reactive antimony precursor and to a reactive tellurium precursor and a co-reactive tellurium precursor.
H01L 21/00 - Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid-state devices, or of parts thereof
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
C23C 16/30 - Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
Various embodiments comprise apparatuses having at least two resistance change memory (RCM) cells. In one embodiment, an apparatus includes at least two electrical contacts coupled to each of the RCM cells. A memory cell material is disposed between pairs of each of the electrical contacts coupled to each of the RCM cells. The memory cell material is capable of forming a conductive pathway between the electrical contacts with at least a portion of the memory cell material arranged to cross-couple a conductive pathway between select ones of the at least two electrical contacts electrically coupled to each of the at least two RCM cells. Additional apparatuses and methods are described.
G11C 5/02 - Disposition of storage elements, e.g. in the form of a matrix array
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G11C 11/50 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using actuation of electric contacts to store the information
G11C 8/00 - Arrangements for selecting an address in a digital store
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 8/14 - Word line organisationWord line lay-out
73.
Apparatus and methods for forming a memory cell using charge monitoring
Apparatuses and methods of forming a memory cell is described. In one such method, a forming charge applied to a memory cell, such as a Resistive RAM (RRAM) memory cell, is monitored to determine the progress of the forming the cell. If the cell is consuming charge too slowly, a higher voltage can be applied. If the cell is consuming charge too quickly, a lower voltage can be applied. The charge may be monitored by charging a capacitor to a certain level, then monitoring the discharge rate of the capacitor though the cell. The monitoring may use comparators to measure the charge. The monitoring may also use an analog to digital converter to perform the monitoring.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 21/66 - Testing or measuring during manufacture or treatment
74.
Methods of forming a metal telluride material, related methods of forming a semiconductor device structure, and related semiconductor device structures
Accordingly, a method of forming a metal chalcogenide material may comprise introducing at least one metal precursor and at least one chalcogen precursor into a chamber comprising a substrate, the at least one metal precursor comprising an amine or imine compound of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid, and the at least one chalcogen precursor comprising a hydride, alkyl, or aryl compound of sulfur, selenium, or tellurium. The at least one metal precursor and the at least one chalcogen precursor may be reacted to form a metal chalcogenide material over the substrate. A method of forming a metal telluride material, a method of forming a semiconductor device structure, and a semiconductor device structure are also described.
H01L 29/04 - Semiconductor bodies characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
H01L 31/20 - Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor material
H01L 31/036 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
H01L 31/0376 - SEMICONDUCTOR DEVICES NOT COVERED BY CLASS - Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
H01L 21/02 - Manufacture or treatment of semiconductor devices or of parts thereof
H01L 31/032 - Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups
C23C 16/30 - Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
C23C 16/455 - Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into the reaction chamber or for modifying gas flows in the reaction chamber
Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
Variable-resistance memory material cells are contacted by vertical bottom spacer electrodes. Variable-resistance material memory spacer cells are contacted along the edge by electrodes. Processes include the formation of the bottom spacer electrodes as well as the variable-resistance material memory spacer cells. Devices include the variable-resistance memory cells.
H01L 21/06 - Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
H01L 21/82 - Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/10 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
77.
Methods of self-aligned growth of chalcogenide memory access device
Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
H01L 29/06 - Semiconductor bodies characterised by the shapes, relative sizes, or dispositions of the semiconductor regions
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
Some embodiments include a memory cell that contains programmable material sandwiched between first and second electrodes. The memory cell can further include a heating element which is directly against one of the electrodes and directly against the programmable material. The heating element can have a thickness in a range of from about 2 nanometers to about 30 nanometers, and can be more electrically resistive than the electrodes. Some embodiments include methods of forming memory cells that include heating elements directly between electrodes and programmable materials.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
79.
Semiconductor constructions, memory arrays, methods of forming semiconductor constructions and methods of forming memory arrays
Some embodiments include methods of forming semiconductor constructions. Carbon-containing material is formed over oxygen-sensitive material. The carbon-containing material and oxygen-sensitive material together form a structure having a sidewall that extends along both the carbon-containing material and the oxygen-sensitive material. First protective material is formed along the sidewall. The first protective material extends across an interface of the carbon-containing material and the oxygen-sensitive material, and does not extend to a top region of the carbon-containing material. Second protective material is formed across the top of the carbon-containing material, with the second protective material having a common composition to the first protective material. The second protective material is etched to expose an upper surface of the carbon-containing material. Some embodiments include semiconductor constructions, memory arrays and methods of forming memory arrays.
H01L 21/00 - Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid-state devices, or of parts thereof
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
The present disclosure includes memory cell structures and method of forming the same. One such memory cell includes a first electrode having sidewalls angled less than 90 degrees in relation to a bottom surface of the first electrode, a second electrode, including an electrode contact portion of the second electrode, having sidewalls angled less than 90 degrees in relation to the bottom surface of the first electrode, wherein the second electrode is over the first electrode, and a storage element between the first electrode and the electrode contact portion of the second electrode.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.
For multi-level interconnect metallization, each metal level maintains a parallel line arrangement within a region, and the lines of each adjacent metal level are orthogonal or otherwise cross with one another. Vertical shunting among levels for routing in different directions employs short paddles that stay within the parallel scheme, and multiple paddles within a region at the same metal level can be co-linear. Parallel lines in the same metal level can be rotated with respect to one another in adjacent regions, for example to better interface with driver circuitry with orthogonal orientations in the different regions.
G11C 7/00 - Arrangements for writing information into, or reading information out from, a digital store
G11C 5/02 - Disposition of storage elements, e.g. in the form of a matrix array
G11C 5/06 - Arrangements for interconnecting storage elements electrically, e.g. by wiring
H01L 23/522 - Arrangements for conducting electric current within the device in operation from one component to another including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
H01L 27/02 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
83.
Immunity of phase change material to disturb in the amorphous phase
Disturb from the reset to the set state may be reduced by creating an amorphous phase that is substantially free of crystal nuclei when programming the reset state in a phase change memory. In some embodiments, this can be achieved by using a current or a voltage to program that exceeds the threshold voltage of the phase change memory element, but does not exceed a safe current voltage which would cause a disturb.
G11C 29/00 - Checking stores for correct operationTesting stores during standby or offline operation
G11C 29/04 - Detection or location of defective memory elements
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
Embodiments disclosed herein may include depositing a storage component material over and/or in a trench in a dielectric material, including depositing the storage component material on approximately vertical walls of the trench and a bottom of the trench. Embodiments may also include etching the storage component material so that at least a portion of the storage component material remains on the approximately vertical walls and the bottom of the trench, wherein the trench is contacting an electrode and a selector such that storage component material on the bottom of the trench contacts the electrode.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
85.
Methods for sensing memory elements in semiconductor devices
A memory device that, in certain embodiments, includes a plurality of memory elements connected to a bit-line and a delta-sigma modulator with a digital output and an analog input, which may be connected to the bit-line. In some embodiments, the delta-sigma modulator includes a circuit with first and second inputs and an output. The circuit is configured to combine (add or subtract) input signals. The first input may be connected to the analog input. The delta-sigma modulator may also include an integrator connected to the output of the circuit, an analog-to-digital converter with an input connected to an output of the integrator and an output connected to the digital output, and a digital-to-analog converter with an input connected to the output of the analog-to-digital converter and an output connected to the second input of the circuit.
G11C 11/56 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
G11C 7/16 - Storage of analogue signals in digital stores using an arrangement comprising analogue/digital [A/D] converters, digital memories and digital/analogue [D/A] converters
G11C 13/00 - Digital stores characterised by the use of storage elements not covered by groups , , or
H03M 3/00 - Conversion of analogue values to or from differential modulation
86.
Advanced bitwise operations and apparatus in a multi-level system with nonvolatile memory
A digital system, components and method are configured with nonvolatile memory for storing digital data using codewords. The data is stored in the memory using multiple bits per memory cell of the memory. A code efficiency, for purposes of write operations and read operations relating to the memory, can be changed on a codeword-to-codeword basis based on input parameters. The code efficiency can change based on changing any one of the input parameters including bit density that is stored by the memory. Storing and reading fractional bit densities can be performed.
G11C 11/00 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor
G06F 11/10 - Adding special bits or symbols to the coded information, e.g. parity check, casting out nines or elevens
H03M 13/15 - Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
H03M 13/25 - Error detection or forward error correction by signal space coding, i.e. adding redundancy in the signal constellation, e.g. Trellis Coded Modulation [TCM]
H03M 13/35 - Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
H03M 13/00 - Coding, decoding or code conversion, for error detection or error correctionCoding theory basic assumptionsCoding boundsError probability evaluation methodsChannel modelsSimulation or testing of codes
87.
Methods of forming phase change materials and methods of forming phase change memory circuitry
A method of forming a phase change material which having germanium and tellurium therein includes depositing a germanium-containing material over a substrate. Such material includes elemental-form germanium. A gaseous tellurium-comprising precursor is flowed to the germanium-comprising material and tellurium is removed from the gaseous precursor to react with the elemental-form germanium in the germanium-comprising material to form a germanium and tellurium-comprising compound of a phase change material over the substrate. Other implementations are disclosed.
H01L 21/00 - Processes or apparatus specially adapted for the manufacture or treatment of semiconductor or solid-state devices, or of parts thereof
H01L 21/06 - Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
88.
Apparatus and methods to provide power management for memory devices
An apparatus, such as a nonvolatile solid-state memory device, may, in some implementations, include access line bias circuitry to set a bias level associated with a deselected access line(s) of a memory core in response to mode information. In one approach, access line bias circuitry may use linear down regulation to change a voltage level on deselected access lines of a memory core. A memory access device, such as a host processor, may be provided that is capable of dynamically setting a mode of operation of a memory core of a memory device in order to manage power consumption of the memory. Other apparatuses and methods are also provided.
Techniques for reducing disturbance in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device having reduced disturbance. The semiconductor memory device may comprise a plurality of memory cells arranged in arrays of rows and columns. The semiconductor memory device may also comprise a plurality of data sense amplifiers, coupled to the plurality of memory cells, configured to perform one or more operations during an operation/access cycle, wherein the operation/access cycle may comprise an operation segment and a disturbance recovery segment.
Resistance variable memory cells having a plurality of resistance variable materials and methods of operating and forming the same are described herein. As an example, a resistance variable memory cell can include a plurality of resistance variable materials located between a plug material and an electrode material. The resistance variable memory cell also includes a first conductive material that contacts the plug material and each of the plurality of resistance variable materials and a second conductive material that contacts the electrode material and each of the plurality of resistance variable materials.
Memory cells and memory cell structures having a number of phase change material gradients, devices utilizing the same, and methods of forming the same are disclosed herein. One example of forming a memory cell includes forming a first electrode material, forming a phase change material gradient on the first electrode material, and forming a second electrode material on the phase change material gradient.
H01L 47/00 - Bulk negative resistance effect devices, e.g. Gunn-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
92.
Techniques for providing a semiconductor memory device
Techniques for providing a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device including a plurality of memory cells arranged in an array of rows and columns. Each memory cell including a first region, a second region, and a body region capacitively coupled to at least one word line and disposed between the first region and the second region. Each memory cell also including a third region, wherein the third region may be doped differently than the first region, the second region, and the body region.
G11C 11/34 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices
G11C 7/00 - Arrangements for writing information into, or reading information out from, a digital store
H01L 27/105 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
H01L 27/12 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate
H01L 27/108 - Dynamic random access memory structures
Accordingly, a method of forming a metal chalcogenide material may comprise introducing at least one metal precursor and at least one chalcogen precursor into a chamber comprising a substrate, the at least one metal precursor comprising an amine or imine compound of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid, and the at least one chalcogen precursor comprising a hydride, alkyl, or aryl compound of sulfur, selenium, or tellurium. The at least one metal precursor and the at least one chalcogen precursor may be reacted to form a metal chalcogenide material over the substrate. A method of forming a metal telluride material, a method of forming a semiconductor device structure, and a semiconductor device structure are also described.
A phase change memory element and method of forming the same. The memory element includes first and second electrodes. A first layer of phase change material is between the first and second electrodes. A second layer including a metal-chalcogenide material is also between the first and second electrodes and is one of a phase change material and a conductive material. An insulating layer is between the first and second layers. There is at least one opening in the insulating layer providing contact between the first and second layers.
H01L 47/00 - Bulk negative resistance effect devices, e.g. Gunn-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
A magnetic cell structure including a nonmagnetic bridge, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, and a nonmagnetic bridge electrically connecting the free layer and the pinned layer. The shape and/or configuration of the nonmagnetic bridge directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer of the structure is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
G11C 11/16 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
Some embodiments include methods of forming semiconductor constructions. Carbon-containing material is formed over oxygen-sensitive material. The carbon-containing material and oxygen-sensitive material together form a structure having a sidewall that extends along both the carbon-containing material and the oxygen-sensitive material. First protective material is formed along the sidewall. The first protective material extends across an interface of the carbon-containing material and the oxygen-sensitive material, and does not extend to a top region of the carbon-containing material. Second protective material is formed across the top of the carbon-containing material, with the second protective material having a common composition to the first protective material. The second protective material is etched to expose an upper surface of the carbon-containing material. Some embodiments include semiconductor constructions, memory arrays and methods of forming memory arrays.
An integrated circuit device having (i) a memory cell array which includes a plurality of memory cells arranged in a matrix of rows and columns, wherein each memory cell includes at least one transistor having a gate, gate dielectric and first, second and body regions, wherein: (i) the body region of each transistor is electrically floating and (ii) the transistors of adjacent memory cells have a common first region and/or a common second region. Each common first region and/or second regions of transistors of adjacent memory cells includes a barrier disposed therein and/or therebetween, wherein each barrier provides a discontinuity in the common regions and/or includes one or more electrical characteristics that are different from one or more corresponding electrical characteristics of the common regions.
H01L 21/84 - Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
H01L 27/105 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
G11C 11/404 - Digital stores characterised by the use of particular electric or magnetic storage elementsStorage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
H01L 27/108 - Dynamic random access memory structures
H01L 27/12 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
H01L 29/78 - Field-effect transistors with field effect produced by an insulated gate
H01L 29/16 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System in uncombined form
H01L 29/20 - Semiconductor bodies characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
Some embodiments include methods of forming memory structures. An electrically insulative line is formed over a base. Electrode material is deposited over the line and patterned to form a pair of bottom electrodes along the sidewalls of the line. Programmable material is formed over the bottom electrodes, and a top electrode is formed over the programmable material. The bottom electrodes may each contain at least one segment which extends at angle of from greater than 0° to less than or equal to about 90° relative to a planar topography of the base. Some embodiments include memory structures having a bottom electrode extending upwardly from a conductive contact to a programmable material, with the bottom electrode having a thickness of less than or equal to about 10 nanometers. Some embodiments include memory arrays and methods of forming memory arrays.
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier
Some embodiments include methods of forming memory cells. A stack includes ovonic material over an electrically conductive region. The stack is patterned into rails that extend along a first direction. The rails are patterned into pillars. Electrically conductive lines are formed over the ovonic material. The electrically conductive lines extend along a second direction that intersects the first direction. The electrically conductive lines interconnect the pillars along the second direction. Some embodiments include a memory array having first electrically conductive lines extending along a first direction. The lines contain n-type doped regions of semiconductor material. Pillars are over the first conductive lines and contain mesas of the n-type doped regions together with p-type doped regions and ovonic material. Second electrically conductive lines are over the ovonic material and extend along a second direction that intersects the first direction. The second electrically conductive lines interconnect the pillars along the second direction.
G11C 17/16 - Read-only memories programmable only onceSemi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
H01L 45/00 - Solid state devices specially adapted for rectifying, amplifying, oscillating, or switching without a potential-jump barrier or surface barrier, e.g. dielectric triodes; Ovshinsky-effect devices; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof
H01L 27/24 - Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including solid state components for rectifying, amplifying, or switching without a potential-jump barrier or surface barrier