The embodiments herein provide a ball valve assembly comprising a ball with an external piston that is biased against the ball to create an external seat at a surface of the ball on the down hole side of the ball as well as an internal piston that is biased against the ball to create an internal seat at a surface of the ball also on the down hole side of the ball. Some embodiments also provide an external gasket that seals between the external piston and the internal piston and an internal gasket that seals between the internal piston and a stationary body. Some embodiments also provide an external spring positioned between the internal piston and the external piston and an internal spring positioned between a stationary body and the internal piston. In some embodiments, the external spring force is the only force acting on the external piston when the valve is sealing off downhole fluid.
E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
E21B 4/00 - Drives for drilling, used in the borehole
2.
Spiral Waveform Analysis For Behind Pipe Cement Evaluation, Well Abandonment Operations And Complex Annular Environments
In general, in one aspect, embodiments relate to a method and/or system that includes disposing a cement bond logging tool into a wellbore. The method and/or system comprising: a cement bond logging tool comprising: two or more transmitters configured to transmit an acoustic wave from cement bond logging tool; and an array of receivers configured to receive a refracted waveform; and an information handling system configured to process the refracted waveform from the array of receivers into a cement bond property log.
E21B 47/005 - Monitoring or checking of cementation quality or level
E21B 47/16 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the drill string or casing
The embodiments herein provide a ball valve assembly comprising a ball with an external piston that is biased against the ball to create an external seat at a surface of the ball on the down hole side of the ball as well as an internal piston that is biased against the ball to create an internal seat at a surface of the ball also on the down hole side of the ball. Some embodiments also provide an external gasket that seals between the external piston and the internal piston and an internal gasket that seals between the internal piston and a stationary body. Some embodiments also provide an external spring positioned between the internal piston and the external piston and an internal spring positioned between a stationary body and the internal piston. In some embodiments, the external spring force is the only force acting on the external piston when the valve is sealing off downhole fluid.
A method and system for identifying anisotropy properties in a formation. The method may include disposing a logging tool into a formation, wherein the logging tool may include an electromagnetic transmitter antenna and an electromagnetic receiver antenna. The method may further include transmitting an electric field signal into the formation from the electromagnetic transmitter antenna, receiving a reflected electric field signal or a magnetic field signal from the formation with the electromagnetic receiver antenna, measuring the reflected electric field signal or the magnetic field signal from the formation with the electromagnetic receiver antenna, and identifying one or more anisotropy properties of adjacent layers in the formation from the reflected electric field signal or the magnetic field signal.
G01V 3/28 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device using induction coils
Some implementations include a modular gun system for use in a wellbore comprising one or more charge segments each including a first electrical conductor having a first set of integrated electrical contacts.
A downhole system may include a downhole tubular having a body portion formed between a central bore and a radially outer surface of the downhole tubular, a neutron generator housed within the body portion and configured to emit neutrons, and a gamma ray detector housed within the body portion and configured to detect gamma rays formed via interactions between the emitted neutrons and a downhole formation. The downhole system may also include a sleeve disposed about the radially outer surface of the downhole tubular. The sleeve may be axially positioned over at least a portion of the gamma ray detector. Additionally, the downhole system may include a thermal neutron absorption layer disposed between a radially outer surface of the sleeve and the gamma ray detector.
G01V 5/12 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma- or X-ray sources
G01V 5/10 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
A method and system for identifying anisotropy properties in a formation. The method may include disposing a logging tool into a formation, wherein the logging tool may include an electromagnetic transmitter antenna and an electromagnetic receiver antenna. The method may further include transmitting an electric field signal into the formation from the electromagnetic transmitter antenna, receiving a reflected electric field signal or a magnetic field signal from the formation with the electromagnetic receiver antenna, measuring the reflected electric field signal or the magnetic field signal from the formation with the electromagnetic receiver antenna, and identifying one or more anisotropy properties of adjacent layers in the formation from the reflected electric field signal or the magnetic field signal.
G01V 3/30 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electromagnetic waves
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
8.
CONDUCTIVE BRIDGING OF A TUBING ENCAPSULATED CONDUCTOR FOR POWERING EQUIPMENT IN WELLBORE OPERATIONS
A system includes a production tubing string. The system can also include a tubing encapsulated conductor (TEC). At least a portion of the TEC can contact the production tubing string at one or more locations along a length of the production tubing string. The TEC can include an interior wire to transmit electric power from a power source to at least one piece of electrical equipment during a wellbore operation performed with respect to the wellbore. The TEC can also include a metal sheath positioned around the interior wire and an encapsulation layer positioned on an outer side of the metal sheath. Further, the TEC can include a conductive bridging component positioned to pierce the encapsulation layer to contact the metal sheath and to facilitate an electrical coupling between the metal sheath and the production tubing string at a location along the length of the production tubing string.
E21B 47/125 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using earth as an electrical conductor
E21B 41/00 - Equipment or details not covered by groups
9.
DOWNHOLE ISOLATION TOOL INCLUDING AN ISOLATION SLEEVE AND SACRIFICIAL PLUG MEMBER
Provided is a downhole isolation tool, a well system, and a method. The downhole isolation tool, in one aspect, includes an outer housing, the outer housing having a fluid passageway extending along a length thereof, an outer housing exterior surface, and an outer housing interior surface, as well as one or more fluid flow ports connecting the fluid passageway and the outer housing exterior surface. The downhole isolation tool, in one aspect, further includes an isolation sleeve positioned within the fluid passageway, the isolation sleeve configured to shift between an open state and a closed state covering the one or more fluid flow ports and obstructing fluid flow between the fluid passageway and the outer housing exterior surface, as well as a sacrificial plug member fluidly coupled with the fluid passageway, the sacrificial plug member configured to seal fluid flow through the fluid passageway.
E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
E21B 23/00 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
E21B 34/10 - Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
E21B 29/06 - Cutting windows, e.g. directional window cutters for whipstock operations
10.
METHOD TO REDUCE PEAK TREATMENT CONSTITUENTS IN SIMULTANEOUS TREATMENT OF MULTIPLE WELLS
A method of controlling a pumping sequence of a fracturing fleet at a wellsite with three or more wellbores comprising determining first, second, and third pumping sequences for a first, second, and third wellbore. The pumping sequences are comprised of a plurality of pump stages that are intervals based on time or volume. The intervals of the first, second, and third pumping sequences are overlapped into a combined pumping sequence. Each of the plurality of intervals of the modified combined pumping sequence is below an operating limit of at least one fracturing unit of the fracturing fleet. The method can include identifying at least one interval wherein the combined pumping sequence exceeds an operating limit of at least one fracturing unit of the fracturing fleet, wherein the at least one interval of the modified combined pumping sequence is below the operating limit.
An exemplary rotor assembly for an electric submersible pump may include a drive shaft, a journal sleeve concentrically disposed about and rotationally fixed to the drive shaft, a bushing concentrically disposed about and configured to rotate with respect to the journal sleeve, and a thrust washer, or component integrating the thrust washer, encircling the drive shaft. Concavities may be formed in an axial face of the bushing or an axial face of the thrust washer. The axial face of the bushing may be disposed proximate to the axial face of the thrust washer. The concavities may be configured to influence flow of lubrication fluid between the bushing and the thrust washer to create a hydrodynamic force against the bushing and the thrust washer when the drive shaft rotates to prevent axial contact.
DOWNHOLE TOOL, WELL SYSTEM, AND METHOD EMPLOYING A SENSOR POSITIONED PROXIMATE A SIGNAL NOISE SOURCE POWERED BY A DOWNHOLE POWER SOURCE, THE SENSOR CONFIGURED TO SENSE FOR NOISE AND SEND UPHOLE OPERATIONAL DATA EMBEDDED WITHIN THE NOISE
Provided is a downhole tool, a well system, and a method. The downhole tool, in one aspect, includes a downhole device located proximate a downhole power source, the downhole device having circuitry coupled thereto, the circuitry configured to receive power from the downhole power source and measure operational data of the downhole device or downhole power source. The downhole tool, in accordance with another aspect, includes a signal noise source coupled with the circuitry, the signal noise source configured to receive the measured operational data from the circuitry and embed the operational data as noise. The downhole tool, in accordance with another aspect, includes a sensor positioned proximate the signal noise source, the sensor configured to sense for the noise and send uphole the operational data embedded within the noise.
E21B 47/107 - Locating fluid leaks, intrusions or movements using acoustic means
E21B 34/06 - Valve arrangements for boreholes or wells in wells
E21B 41/00 - Equipment or details not covered by groups
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
E21B 49/08 - Obtaining fluid samples or testing fluids, in boreholes or wells
13.
ELECTRIC SUBMERSIBLE PUMP ROTOR ASSEMBLY WITH BEARING SPACER CONFIGURED FOR THRUST WASHER SUPPORT
An exemplary rotor assembly for an ESP motor can comprise a rotor module concentrically disposed on a drive shaft; a bearing assembly concentrically disposed about the drive shaft in proximity to the rotor module; a thrust washer concentrically disposed about the drive shaft and axially between the bearing assembly and the rotor module; and an axial support flange disposed concentrically about the drive shaft and axially between the thrust washer and the rotor module. In some embodiments, the axial support flange can abut the thrust washer. Disclosed embodiments may reduce dishing of the thrust washer when the motor is in operation, which can be particularly useful in embodiments having concavities formed in an axial face of the bearing bushing or the thrust washer which can influence flow of lubrication fluid between the bushing and the thrust washer to create a hydrodynamic force.
Provided are embodiments of a multi-sensor apparatus for use downhole in a wellbore, a system, and a method for using a multi-sensor apparatus. In one embodiment, an apparatus for use in a wellbore, comprises a manifold, the manifold having a plurality of ports; a housing connected with the manifold; at least three sensors positioned within the housing; and a first internal channel and a second internal channel for enabling fluid flow through the manifold. In another embodiment, a system includes a removable downhole tool and a multi-sensor apparatus coupled with the removable downhole tool.
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelinesProtecting measuring instruments in boreholes against heat, shock, pressure or the like
An exemplary rotor assembly for an electric submersible pump may include a drive shaft, a journal sleeve concentrically disposed about and rotationally fixed to the drive shaft, a bushing concentrically disposed about and configured to rotate with respect to the journal sleeve, and a thrust washer, or component integrating the thrust washer, encircling the drive shaft. Concavities may be formed in an axial face of the bushing or an axial face of the thrust washer. The axial face of the bushing may be disposed proximate to the axial face of the thrust washer. The concavities may be configured to influence flow of lubrication fluid between the bushing and the thrust washer to create a hydrodynamic force against the bushing and the thrust washer when the drive shaft rotates to prevent axial contact.
Disclosed herein are systems and methods of controlling downhole production flow from one or more production zones of a well. A system may include at least one downhole power generator, at least one sensor, at least one electronic assembly, and at least one production valve. In some systems, the downhole power generator, the sensor, the electronic assembly, and the production valve are incorporated within the same module. The downhole power generator is fluidically connected to the fluid inside the production tubing string. The sensor is electrically connected to the downhole power generator, wherein the sensor measures a phase of the fluid. The electronic assembly is connected to the downhole power generator and the sensor. The production valve is electrically connected to the electronic assembly and fluidly connected to the fluid inside the production tubing string.
A DOWNHOLE TOOL, WELL SYSTEM, AND METHOD EMPLOYING A SENSOR POSITIONED PROXIMATE A SIGNAL NOISE SOURCE POWERED BY A DOWNHOLE POWER SOURCE, THE SENSOR CONFIGURED TO SENSE FOR NOISE AND SEND UPHOLE OPERATIONAL DATA EMBEDDED WITHIN THE NOISE
Provided is a downhole tool, a well system, and a method. The downhole tool, in one aspect, includes a downhole device located proximate a downhole power source, the downhole device having circuitry coupled thereto, the circuitry configured to receive power from the downhole power source and measure operational data of the downhole device or downhole power source. The downhole tool, in accordance with another aspect, includes a signal noise source coupled with the circuitry, the signal noise source configured to receive the measured operational data from the circuitry and embed the operational data as noise. The downhole tool, in accordance with another aspect, includes a sensor positioned proximate the signal noise source, the sensor configured to sense for the noise and send uphole the operational data embedded within the noise.
A system may include a production valve secured in a production fluid line of a downhole tubular. The production valve is configured to control flow through the production fluid line between a wellbore annulus and a central bore of the downhole tubular. The system may further include a pilot line extending at least to the production valve from the annulus. A flow restrictor disposed within the pilot line is configured to increase fluid pressure in the pilot line. Further, the system may include a solenoid valve secured within the pilot line and configured to actuate between an open state and a closed state in response to instructions from a controller. Pressure in the pilot line is configured to rise above an actuation threshold pressure configured to close the production valve in response to formation fluid flowing through the solenoid valve in the open state of the solenoid valve.
Systems and techniques are provided for determining a time zero echo of a nuclear magnetic resonance (NMR) sequence. An example method includes obtaining, via an NMR tool in a borehole, echo waveforms associated with refocusing pulses and a free induction decay (FID) waveform associated with an excitation pulse; determining echo values based on the echo waveforms and an apparent time-zero echo value based on the FID waveform, the apparent time-zero echo value representing a time zero echo; applying a correction factor to the apparent time-zero echo value to yield a corrected time zero echo value; and determining a spectrum associated with a sample based on an inversion performed on the corrected time zero echo values and the set of echo values before or after a conversion of the corrected time zero echo value and the set of echo values to porosity units, the conversion of the corrected time zero echo value and the set of echo values being based on one or more conversion factors.
G01N 24/08 - Investigating or analysing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
G01R 33/44 - Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
G01V 3/32 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
Provided are embodiments of a multi-sensor apparatus for use downhole in a wellbore, a system, and a method for using a multi-sensor apparatus. In one embodiment, an apparatus for use in a wellbore, comprises a manifold, the manifold having a plurality of ports; a housing connected with the manifold; at least three sensors positioned within the housing; and a first internal channel and a second internal channel for enabling fluid flow through the manifold. In another embodiment, a system includes a removable downhole tool and a multi-sensor apparatus coupled with the removable downhole tool.
E21B 47/01 - Devices for supporting measuring instruments on drill bits, pipes, rods or wirelinesProtecting measuring instruments in boreholes against heat, shock, pressure or the like
21.
DOWNHOLE ISOLATION TOOL INCLUDING AN ISOLATION SLEEVE AND SACRIFICIAL PLUG MEMBER
Provided is a downhole isolation tool, a well system, and a method. The downhole isolation tool, in one aspect, includes an outer housing, the outer housing having a fluid passageway extending along a length thereof, an outer housing exterior surface, and an outer housing interior surface, as well as one or more fluid flow ports connecting the fluid passageway and the outer housing exterior surface. The downhole isolation tool, in one aspect, further includes an isolation sleeve positioned within the fluid passageway, the isolation sleeve configured to shift between an open state and a closed state covering the one or more fluid flow ports and obstructing fluid flow between the fluid passageway and the outer housing exterior surface, as well as a sacrificial plug member fluidly coupled with the fluid passageway, the sacrificial plug member configured to seal fluid flow through the fluid passageway.
E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
E21B 23/00 - Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
A downhole system may include a downhole tubular having a body portion formed between a central bore and a radially outer surface of the downhole tubular, a neutron generator housed within the body portion and configured to emit neutrons, and a gamma ray detector housed within the body portion and configured to detect gamma rays formed via interactions between the emitted neutrons and a downhole formation. The downhole system may also include a sleeve disposed about the radially outer surface of the downhole tubular. The sleeve may be axially positioned over at least a portion of the gamma ray detector. Additionally, the downhole system may include a thermal neutron absorption layer disposed between a radially outer surface of the sleeve and the gamma ray detector.
E21B 49/00 - Testing the nature of borehole wallsFormation testingMethods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
G01V 5/10 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
23.
DOWNHOLE TOOL, WELL SYSTEM, AND METHOD EMPLOYING A SENSOR POSITIONED PROXIMATE A FLOW CONTROL DEVICE, THE SENSOR CONFIGURED TO SENSE FOR A CHANGE IN NOISE EMANATING FROM THE FLOW CONTROL DEVICE
Provided is a downhole tool, a well system, and a method. The downhole tool, in one aspect, includes a flow control device coupleable with a tubing string, the flow control device configured to allow fluid to pass between an outside diameter (OD) of the tubing string and an inside diameter (ID) of the tubing string. The downhole tool, in accordance with another aspect, includes a sensor positioned proximate the flow control device, the sensor configured to sense for and send uphole operational data originating from the flow control device, the operational data in a form of a change in noise emanating from the flow control device.
DOWNHOLE TOOL, WELL SYSTEM, AND METHOD EMPLOYING A SENSOR POSITIONED PROXIMATE A SPINNING FEATURE OF A DOWNHOLE DEVICE, THE SENSOR CONFIGURED TO SENSE FOR A CHANGE IN NOISE EMANATING FROM THE SPINNING FEATURE
Provided is a downhole tool, a well system, and a method. The downhole tool, in one aspect, includes a downhole device, the downhole device including a spinning feature associated therewith. The downhole tool, in accordance with another aspect, includes a sensor positioned proximate the spinning feature of the downhole device, the sensor configured to sense for and send uphole operational data originating from the spinning feature of the downhole device, the operational data in the form of a change in noise emanating from the spinning feature of the downhole device.
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
G01D 5/26 - Mechanical means for transferring the output of a sensing memberMeans for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for convertingTransducers not specially adapted for a specific variable using optical means, i.e. using infrared, visible or ultraviolet light
25.
FLUIDIC MANIFOLD FOR OPENING AND CLOSING A DOWNHOLE VALVE
A system may include a production valve secured in a production fluid line of a downhole tubular. The production valve is configured to control flow through the production fluid line between a wellbore annulus and a central bore of the downhole tubular. The system may further include a pilot line extending at least to the production valve from the annulus. A flow restrictor disposed within the pilot line is configured to increase fluid pressure in the pilot line. Further, the system may include a solenoid valve secured within the pilot line and configured to actuate between an open state and a closed state in response to instructions from a controller. Pressure in the pilot line is configured to rise above an actuation threshold pressure configured to close the production valve in response to formation fluid flowing through the solenoid valve in the open state of the solenoid valve.
An apparatus comprising a gravel pack assembly positioned in a wellbore formed in a subsurface formation. The apparatus comprising a lower completion assembly positioned at a depth in the wellbore deeper than the gravel pack assembly, wherein the lower completion assembly is configured with a wet mate housing to communicatively couple a first line positioned in the wellbore and a second line positioned on an upper completion assembly.
Nuclear magnetic resonance (NMR) tools collect data by transmitting excitation pulses and receiving signals stimulated by the transmitted excitation pulses. Excitation pulses are transmitted by the NMR tool at a time referred to as echo time zero. After a nuclear magnetic resonance (NMR) tool transmits excitation pulses, NMR signals stimulated by those excitation pulses are received at the NMR tool. Received signals include a ringing portion and an echo waveform. This ringing portion can prevent the NMR tool from collecting echo time zero data that is useful for determining properties of materials adjacent to the NMR tool. Systems and techniques of the present disclosure determine apparent time-zero echo values such that determinations made from collected NMR data can be more accurate.
G01V 3/32 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electron or nuclear magnetic resonance
G01V 3/14 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation operating with electron or nuclear magnetic resonance
E21B 49/02 - Testing the nature of borehole wallsFormation testingMethods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
28.
A DOWNHOLE TOOL, WELL SYSTEM, AND METHOD EMPLOYING A SENSOR POSITIONED PROXIMATE A FLOW CONTROL DEVICE, THE SENSOR CONFIGURED TO SENSE FOR A CHANGE IN NOISE EMANATING FROM THE FLOW CONTROL DEVICE
Provided is a downhole tool, a well system, and a method. The downhole tool, in one aspect, includes a flow control device coupleable with a tubing string, the flow control device configured to allow fluid to pass between an outside diameter (OD) of the tubing string and an inside diameter (ID) of the tubing string. The downhole tool, in accordance with another aspect, includes a sensor positioned proximate the flow control device, the sensor configured to sense for and send uphole operational data originating from the flow control device, the operational data in a form of a change in noise emanating from the flow control device.
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21B 47/125 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using earth as an electrical conductor
E21B 41/00 - Equipment or details not covered by groups
29.
A DOWNHOLE TOOL, WELL SYSTEM, AND METHOD EMPLOYING A SENSOR POSITIONED PROXIMATE A SPINNING FEATURE OF A DOWNHOLE DEVICE, THE SENSOR CONFIGURED TO SENSE FOR A CHANGE IN NOISE EMANATING FROM THE SPINNING FEATURE
Provided is a downhole tool, a well system, and a method. The downhole tool, in one aspect, includes a downhole device, the downhole device including a spinning feature associated therewith. The downhole tool, in accordance with another aspect, includes a sensor positioned proximate the spinning feature of the downhole device, the sensor configured to sense for and send uphole operational data originating from the spinning feature of the downhole device, the operational data in the form of a change in noise emanating from the spinning feature of the downhole device.
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21B 41/00 - Equipment or details not covered by groups
E21B 47/125 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using earth as an electrical conductor
A rotating machine. The rotating machine comprises a tubular housing; a drive shaft disposed at least partly inside the tubular housing; a component disposed inside of the tubular housing that is coupled to the drive shaft and configured to do work as the drive shaft rotates; and a shaft stop assembly coupled to the drive shaft comprising a collet disposed around the drive shaft, a compressor flange disposed around the collet and around the drive shaft and engaging with the collet to compress the collet to form a friction fit with the drive shaft, and a compression stop disposed around the compressor flange and around the drive shaft, wherein a first axial end of the compression stop abuts an end of the collet.
A method of controlling a pumping sequence of a fracturing fleet at a wellsite with three or more wellbores comprising determining first, second, and third pumping sequences for a first, second, and third wellbore. The pumping sequences are comprised of a plurality of pump stages that are intervals based on time or volume. The intervals of the first, second, and third pumping sequences are overlapped into a combined pumping sequence. Each of the plurality of intervals of the modified combined pumping sequence is below an operating limit of at least one fracturing unit of the fracturing fleet. The method can include identifying at least one interval wherein the combined pumping sequence exceeds an operating limit of at least one fracturing unit of the fracturing fleet, wherein the at least one interval of the modified combined pumping sequence is below the operating limit.
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
E21B 43/26 - Methods for stimulating production by forming crevices or fractures
F04B 49/00 - Control of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for in, or of interest apart from, groups
32.
LOCK SYSTEM FOR TRANSPORT CONTAINERS AND METHOD OF ASSEMBLY THEREOF
A lock system for holding transport containers, the system including one or more pairs of brackets, each bracket including frame guides, axle guides and gusset plates. The frame guides are coupled to a major surface of a bracket body of the bracket and have guide walls projecting perpendicularly from the major surface to form frame openings. The axle guides are coupled to and project perpendicularly from the major surface and each of the axle guides surround first thru-holes in the bracket body. The gusset plates couple one of the guide walls to the major surface and the gusset plates have one or more second thru holes therein. A method of assembling the system is also disclosed.
An apparatus comprising a gravel pack assembly positioned in a wellbore formed in a subsurface formation. The apparatus comprising a lower completion assembly positioned at a depth in the wellbore deeper than the gravel pack assembly, wherein the lower completion assembly is configured with a wet mate housing to communicatively couple a first line positioned in the wellbore and a second line positioned on an upper completion assembly.
Disclosed herein are systems and methods of controlling downhole production flow from one or more production zones of a well. A system may include at least one downhole power generator, at least one sensor, at least one electronic assembly, and at least one production valve. In some systems, the downhole power generator, the sensor, the electronic assembly, and the production valve are incorporated within the same module. The downhole power generator is fluidically connected to the fluid inside the production tubing string. The sensor is electrically connected to the downhole power generator, wherein the sensor measures a phase of the fluid. The electronic assembly is connected to the downhole power generator and the sensor. The production valve is electrically connected to the electronic assembly and fluidly connected to the fluid inside the production tubing string.
E21B 41/00 - Equipment or details not covered by groups
E21B 34/06 - Valve arrangements for boreholes or wells in wells
E21B 47/10 - Locating fluid leaks, intrusions or movements
E21B 47/18 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid
35.
DOWNHOLE WELL TOOL HAVING A CONNECTOR MECHANISM WITH A CLEANING DIELECTRIC CHAMBER FOR WELL SYSTEMS
Systems, methods, and apparatus for establishing a downhole connection between a first well tool and a second well tool. The first well tool may include a mandrel, a first connector assembly, and an elongated protection sleeve. The protection sleeve may form a hydraulic chamber over the mandrel when positioned in a closed position, and the hydraulic chamber may include a dielectric cleaning material. The elongated protection sleeve may be configured to mechanically move to an open position when engaging with a second well tool downhole to release the dielectric cleaning material and connect with the second well tool via the first connector assembly. The dielectric cleaning material may be injected into a cavity between the first connector assembly of the first well tool and a second connector assembly of the second well tool to clean and displace downhole fluids and debris located in the cavity and establish the connection.
E21B 37/06 - Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting the deposition of paraffins or like substances
Wellbore systems include one or more sensing devices configured to sense physical parameters before, during, and/or after fluid injection procedures are performed to inject fluid into a subterranean formation. Seismic vibrations may be induced into the subterranean formation and detected at the injection wellbore or in a remote monitoring wellbore as part of monitoring and evaluation of the fluid injection operations. The one or more sensing devices may also be configured to monitor well production and/or formation conditions in and around a single wellbore and/or in multiple wellbore systems.
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
G01V 1/22 - Transmitting seismic signals to recording or processing apparatus
G01V 1/42 - SeismologySeismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice-versa
37.
FLUOROPLASTIC BASED LINER HANGERS FOR GEOTHERMAL AND CORROSIVE ENVIRONMENTS
Some implementations include a method comprising positioning a fluoroplastic sleeve on a body of a liner hanger configured for insertion in a borehole. The method also may include heating the fluoroplastic sleeve.
Systems, methods, and apparatus for establishing a downhole connection between a first well tool and a second well tool. The first well tool may include a mandrel, a first connector assembly, and an elongated protection sleeve. The protection sleeve may form a hydraulic chamber over the mandrel when positioned in a closed position, and the hydraulic chamber may include a dielectric cleaning material. The elongated protection sleeve may be configured to mechanically move to an open position when engaging with a second well tool downhole to release the dielectric cleaning material and connect with the second well tool via the first connector assembly. The dielectric cleaning material may be injected into a cavity between the first connector assembly of the first well tool and a second connector assembly of the second well tool to clean and displace downhole fluids and debris located in the cavity and establish the connection.
E21B 34/14 - Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
Disclosed are systems and methods for detecting a downhole anomaly. The method can include receiving one or more acoustic measurements at a plurality of corresponding depths in a casing, determining a presence of a flow at one or more flow depths, receiving one or more electromagnetic measurements at each of the one or more flow depths in the casing, determining an integrity of the casing at each of the one or more flow depths in the casing, and determining a presence or absence of a leak at each of the one or more flow depths in the casing based on the integrity of the casing at each of the one or more flow depths.
Wellbore systems include one or more sensing devices configured to sense physical parameters before, during, and/or after fluid injection procedures are performed to inject fluid into a subterranean formation. Seismic vibrations may be induced into the subterranean formation and detected at the injection wellbore or in a remote monitoring wellbore as part of monitoring and evaluation of the fluid injection operations. The one or more sensing devices may also be configured to monitor well production and/or formation conditions in and around a single wellbore and/or in multiple wellbore systems.
Disclosed are systems and methods for detecting a downhole anomaly. The method can include receiving one or more acoustic measurements at a plurality of corresponding depths in a casing, determining a presence of a flow at one or more flow depths, receiving one or more electromagnetic measurements at each of the one or more flow depths in the casing, determining an integrity of the casing at each of the one or more flow depths in the casing, and determining a presence or absence of a leak at each of the one or more flow depths in the casing based on the integrity of the casing at each of the one or more flow depths.
G01V 11/00 - Prospecting or detecting by methods combining techniques covered by two or more of main groups
G01V 1/40 - SeismologySeismic or acoustic prospecting or detecting specially adapted for well-logging
G01V 3/18 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging
E21B 47/117 - Detecting leaks, e.g. from tubing, by pressure testing
G01V 1/18 - Receiving elements, e.g. seismometer, geophone
42.
A LOCK SYSTEM FOR TRANSPORT CONTAINERS AND METHOD OF ASSEMBLY THEREOF
A lock system for holding transport containers, the system including one or more pairs of brackets, each bracket including frame guides, axle guides and gusset plates. The frame guides are coupled to a major surface of a bracket body of the bracket and have guide walls projecting perpendicularly from the major surface to form frame openings. The axle guides are coupled to and project perpendicularly from the major surface and each of the axle guides surround first thru-holes in the bracket body. The gusset plates couple one of the guide walls to the major surface and the gusset plates have one or more second thru holes therein. A method of assembling the system is also disclosed.
A puddle job can be performed in a wellbore to secure a liner within an open-hole wellbore. A resin in liquid form can be spotted at the bottom of the wellbore. The liner can be lowered into the wellbore to displace the resin up into an annulus between the outside of the liner and the wellbore wall. The resin can be contacted with a solid or liquid activator to cause the resin to set. The activator can cause the resin to set via a polymerization reaction such as ROMP, FRP, or step polymerization. The resin can be contacted with the activator as the liner is being lowered or afterwards. The resin/activator can be used instead of a cement composition.
E21B 33/05 - Cementing-heads, e.g. having provision for introducing cementing plugs
C09K 8/44 - Compositions for cementing, e.g. for cementing casings into boreholesCompositions for plugging, e.g. for killing wells containing organic binders only
E21B 43/16 - Enhanced recovery methods for obtaining hydrocarbons
A gas separator for an electric submersible pump includes an inlet, an outlet, and a first portion including a first inner circumferential surface and a first outer circumferential surface having a first diameter. The first portion is disposed between the inlet and the outlet. The gas separator further includes a second portion including a second inner circumferential surface and a second outer circumferential surface having a second diameter. The second portion is disposed between the first portion and the outlet. The first diameter is less than the second diameter.
A puddle job can be performed in a wellbore to secure a liner within an open-hole wellbore. A resin in liquid form can be spotted at the bottom of the wellbore. The liner can be lowered into the wellbore to displace the resin up into an annulus between the outside of the liner and the wellbore wall. The resin can be contacted with a solid or liquid initiator to cause the resin to set. The resin can be contacted with the initiator as the liner is being lowered or afterwards. The resin/initiator can be used instead of a cement composition.
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
(1) Lost circulation materials used in the treatment of wells, namely, lost circulation additives; Lost circulation additives used in oil and gas drilling fluids; Acid soluble lost circulation material used in oil and gas drilling fluids; Acid soluble lost circulation material used in drilling operations; Lost circulation additive, namely, lost circulation material comprised of mineral fiber
09 - Scientific and electric apparatus and instruments
42 - Scientific, technological and industrial services, research and design
Goods & Services
Active magnetic ranging system comprised of electromagnetic apparatus used to generate or measure magnetic fields Active magnetic ranging services, namely, conducting magnetic resonance imaging interpretation and analysis for the petroleum industry
A blending unit is provided. The blending unit comprises two or more discharge pumps. Each of the two or more discharge pumps has a suction inlet fluidly connected to a common proppant fluid supply via a concentrated proppant inlet line, and a discharge outlet fluidly connected to a blender outlet line. Each of the two or more discharge pumps also has an injection port upstream of the discharge pump and configured to inject substantially proppant-free fluid into the concentrated proppant inlet line, an injection port downstream from the discharge pump and configured to inject substantially proppant-free fluid into the blender outlet line, or both the injection port upstream of the discharge pump and the injection port downstream from the discharge pump.
An apparatus for sealing an annular space proximate to an end of a sand screen on a downhole tubular may include a flexible seal configured to encircle the tubular. The flexible seal may include a first state in which an outer diameter of the flexible seal is less than a diameter of a wellbore, and a second state in which the outer diameter of the flexible seal is the same as the diameter of the wellbore. The apparatus may further include a deployment mechanism configured to cause the flexible seal to transition from the first state to the second state.
A method including providing a total flow rate of a proppant slurry by: utilizing a slurry pump to provide a concentrated slurry flow rate of a concentrated slurry, wherein the concentrated slurry has a higher concentration of the proppant than the proppant slurry, wherein the total flow rate of the proppant slurry is greater than a maximum slurry pump flow rate of a preferred operating range (FOR) of the slurry pump, and wherein the concentrated slurry flow rate is less than or equal to the maximum slurry pump flow rate; utilizing a clean fluid pump to provide a clean pump flow rate of a clean fluid, wherein the clean fluid is substantially proppant-free; and combining the clean pump flow rate of the clean fluid with the concentrated slurry flow rate of the concentrated slurry to provide the total pump flow rate of the proppant slurry.
BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM (USA)
Inventor
Xu, Jiamin
Zhang, He
Tian, Kaixiao
Demirer, Nazli
Liu, Yang
Bhaidasna, Ketan C.
Darbe, Robert P.
Chen, Dongmei
Abstract
In directional drilling, a nonlinear Delay Differential Equation (DDE) model may be used for its high precision in predicting how a borehole may be drilled according to a well plan. To address challenges associated with real-time control of a drill drilling wellbore, techniques of generalized feedback linearization, finite element concept, and zero-order hold discretization may be used to transform a nonlinear DDE model into discretized domain with a linear Ordinary Differential Equation (ODE) form. Following this transformation, a novel optimization framework may be used to concurrently determine optimal control inputs and solve a linear complementarity problem (LCP). The validity of both the discretized model and the optimization strategy may be verified by comparing modeled results with real-world results. Subsequent closed-loop simulations demonstrate the ability of the proposed model predictive control to maintain alignment of a drill string with a planned well trajectory, even in the presence of disturbances and noise.
G01V 3/30 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electromagnetic waves
G01V 1/40 - SeismologySeismic or acoustic prospecting or detecting specially adapted for well-logging
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
A method may include: introducing a resin modified cement slurry into a wellbore penetrating a subterranean formation, the subterranean formation comprising a caprock and a carbon dioxide injection zone, the resin modified cement slurry comprising: a resin; a hardener; a hydraulic cement; and water; and setting the resin modified cement slurry to form a set cement wherein the set cement forms a carbonation-resistant barrier in the carbon dioxide injection zone in the subterranean formation.
A proportioner comprising one or more proportioner inlets configured to receive a common concentrated proppant fluid comprising a proppant; two or more flow lines fluidly connected to the one or more proportioner inlets; two or more proportioner outlets, each of the two or more proportioner outlets associated with one of the two or more flow lines; one or more fluid inlets, each of the one or more fluid inlets configured to introduce a proppant-free fluid to the proportioner; and a metering system associated with at least one of the two or more flow lines, each at least one metering system upstream of the proportioner outlet of the flow line with which it is associated and each metering system fluidly connected with at least one of the one or more fluid inlets and configured for proportioning one of the proppant-free fluids into the associated flow line at an injection point.
Some implementations include a method comprising positioning a fluoroplastic sleeve on a body of a liner hanger configured for insertion in a borehole. The method also may include heating the fluoroplastic sleeve.
A proportioner comprising one or more proportioner inlets configured to receive a common concentrated proppant fluid comprising a proppant; two or more flow lines fluidly connected to the one or more proportioner inlets; two or more proportioner outlets, each of the two or more proportioner outlets associated with one of the two or more flow lines; one or more fluid inlets, each of the one or more fluid inlets configured to introduce a proppant-free fluid to the proportioner; and a metering system associated with at least one of the two or more flow lines, each at least one metering system upstream of the proportioner outlet of the flow line with which it is associated and each metering system fluidly connected with at least one of the one or more fluid inlets and configured for proportioning one of the proppant-free fluids into the associated flow line at an injection point.
A blending unit comprising two or more discharge pumps, each of the two or more discharge pumps having a suction inlet fluidly connected to a common proppant fluid supply via a concentrated proppant inlet line, and a discharge outlet fluidly connected to a blender outlet line; and an injection port upstream of the discharge pump and configured to inject substantially proppant-free fluid into the concentrated proppant inlet line, an injection port downstream from the discharge pump and configured to inject substantially proppant-free fluid into the blender outlet line, or both an injection port upstream of the discharge pump and an injection port downstream from the discharge pump.
40 - Treatment of materials; recycling, air and water treatment,
37 - Construction and mining; installation and repair services
Goods & Services
Oil and gas well stimulation and fracturing services, namely, slurry blending Oil and gas well stimulation and fracturing services, namely, fluid management in the nature of hydraulic fracturing services and hydraulic fracturing of subsurface geologic formations to enhance well production
58.
Pulse generation of viscous fluids with a mud motor
In general, in one aspect, embodiments relate to a downhole tool assembly, that includes a rotary mechanism, a pulsing mechanism, that includes a rotary disc in mechanical communication with the rotary mechanism, where a window of the rotary disc periodically aligns with a corresponding window of the downhole tool assembly to generate a pressure pulse based on a periodicity of the rotary mechanism, and a discharge port configured to discharge fluid as the fluid is being pulsed by the pulsing mechanism.
E21B 47/24 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid by positive mud pulses using a flow restricting valve within the drill pipe
E21B 33/13 - Methods or devices for cementing, for plugging holes, crevices or the like
40 - Treatment of materials; recycling, air and water treatment,
37 - Construction and mining; installation and repair services
Goods & Services
Oil and gas well stimulation and fracturing services, namely, slurry blending Oil and gas well stimulation and fracturing services, namely, fluid management in the nature of hydraulic fracturing services and hydraulic fracturing of subsurface geologic formations to enhance well production
40 - Treatment of materials; recycling, air and water treatment,
37 - Construction and mining; installation and repair services
Goods & Services
Oil and gas well stimulation and fracturing services, namely, slurry blending Oil and gas well stimulation and fracturing services, namely, fluid management in the nature of hydraulic fracturing services and hydraulic fracturing of subsurface geologic formations to enhance well production
61.
Method and composition for treating lost circulation
An invert emulsion is used to form a hydrated flocculated polymer useful in reducing fluid loss in downhole operations. The invert emulsion can be sheared to form the hydrated flocculated polymer, which can be introduced downhole into the fluid loss flow path in a subterranean formation and allowed to accumulate at the pore throat to reduce fluid loss.
A debris collection tool that includes a swirl generator that includes a first opening disposed on an exterior of the debris collection tool, and a second opening disposed inside the debris collection tool, where the first opening and the second opening are disposed at opposite axial ends of the swirl generator.
Board of Regents, The University of Texas System (USA)
Inventor
Xu, Jiamin
Zhang, He
Tian, Kaixiao
Demirer, Nazli
Liu, Yang
Bhaidasna, Ketan C.
Darbe, Robert P.
Chen, Dongmei
Abstract
In directional drilling, a nonlinear Delay Differential Equation (DDE) model may be used for its high precision in predicting how a borehole may be drilled according to a well plan. To address challenges associated with real-time control of a drill drilling wellbore, techniques of generalized feedback linearization, finite element concept, and zero-order hold discretization may be used to transform a nonlinear DDE model into discretized domain with a linear Ordinary Differential Equation (ODE) form. Following this transformation, a novel optimization framework may be used to concurrently determine optimal control inputs and solve a linear complementarity problem (LCP). The validity of both the discretized model and the optimization strategy may be verified by comparing modeled results with real-world results. Subsequent closed-loop simulations demonstrate the ability of the proposed model predictive control to maintain alignment of a drill string with a planned well trajectory, even in the presence of disturbances and noise.
E21B 44/00 - Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systemsSystems specially adapted for monitoring a plurality of drilling variables or conditions
01 - Chemical and biological materials for industrial, scientific and agricultural use
Goods & Services
Lost circulation materials used in the treatment of wells, namely, lost circulation additives; Lost circulation additives used in oil and gas drilling fluids; Acid soluble lost circulation material used in oil and gas drilling fluids; Acid soluble lost circulation material used in drilling operations; Lost circulation additive, namely, lost circulation material comprised of mineral fiber
A packer assembly can be used to create a seal against an inside of a tubing string. The packer assembly can be used in high-temperature, high-pressure wellbores. The packer assembly can include a first and second sealing element with a spacer located between. The spacer can be made from a deformable material such that during mechanical or hydraulic actuation of the sealing elements, the spacer expands to make contact with the inside of the tubing string and keeps at least a portion of the inside edges of the sealing elements separated. The deformable spacer can reduce the amount of elongation strain the sealing elements commonly encounter at the vicinity of current metal spacer designs during setting below a value that would cause a loss of structural integrity to the sealing elements.
Systems, methods, and apparatus, including computer programs encoded on computer-readable media, for performing a seismic survey and characterization of a subsurface formation. Seismic sources coupled to a wellbore of a well system may emit source seismic signals. Seismic sensors coupled to the wellbore may detect seismic signals associated with the plurality of source seismic signals. The detected seismic signals may be reflected seismic signals, refracted seismic signals, or both. A seismic characterization of the subsurface formation may be performed based on analysis of the detected seismic signals and the plurality of source seismic signals. A change in a fluid front of the subsurface formation may be detected based on the seismic characterization of the subsurface formation. Inflow control devices that control fluid flow in a plurality of zones of the wellbore may be controlled based on the seismic characterization and a detected change in the fluid front.
E21B 49/00 - Testing the nature of borehole wallsFormation testingMethods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
67.
PRODUCING FLUID FROM A WELL USING DISTRIBUTED ACOUSTIC SENSING AND AN ELECTRICAL SUBMERSIBLE PUMP
In some embodiments, a system for producing fluid from a well can include an electrical submersible pump (ESP) disposed in a wellbore of the well and configured to pump the fluid. The system may further include a distributed acoustic sensing (DAS) system, for example having an interrogator unit and a fiber optic cable extending downhole in the wellbore. An end of the fiber optic cable can be disposed downhole relative to the ESP. In embodiments, the system may further include a controller configured to receive data from the DAS system, process the data to detect a slug, determine a parameter of the detected slug, and alter operation of the ESP in response to determining that the parameter exceeds a threshold.
Drilling fluids for drilling a wellbore. An example drilling fluid includes an aqueous base fluid, a first fluid loss control additive that is a cross-linked polymer comprising N-vinylpyrrolidone as a monomer, and a second fluid loss control additive that is a cross-linked copolymer comprising a first comonomer of 2-acrylamido-2-methylpropanesulfonic acid in a first comonomer concentration of at least 50 mol % of the copolymer. The second fluid loss control additive additionally includes a second comonomer of an N-vinyl amine-containing monomer, a terminal double bound-containing monomer, or a combination of an N-vinyl amine-containing monomer and a terminal double bound-containing monomer. The second comonomer is present in a total second comonomer concentration of 50 mol % or less of the copolymer.
Systems, methods, and apparatus, including computer programs encoded on computer-readable media, for performing a seismic survey and characterization of a subsurface formation. Seismic sources coupled to a wellbore of a well system may emit source seismic signals. Seismic sensors coupled to the wellbore may detect seismic signals associated with the plurality of source seismic signals. The detected seismic signals may be reflected seismic signals, refracted seismic signals, or both. A seismic characterization of the subsurface formation may be performed based on analysis of the detected seismic signals and the plurality of source seismic signals. A change in a fluid front of the subsurface formation may be detected based on the seismic characterization of the subsurface formation. Inflow control devices that control fluid flow in a plurality of zones of the wellbore may be controlled based on the seismic characterization and a detected change in the fluid front.
Acidizing fluids can be used in a variety of oil and gas operations such as matrix acidizing, fracture acidizing, and acid washing. Some additives included in acidizing fluids may not be compatible with the fluid at the low pH. A plurality of nanobubbles can be used in the acidizing fluid to increase the additive compatibility.
A variety of treatment fluids used in oil and gas operations include a scale control additive and other additives. The scale control additive can be incompatible with the other additives, for example when the scale control additive has a different charge than the other additives. This incompatibility can cause instability of the treatment fluid by causing aggregation of colloidal droplets that are held together by electrostatic attractive forces. The addition of nanobubbles in the treatment fluid can stabilize the fluid and make the scale control additive and other additives compatible with each other.
C09K 8/38 - Gaseous or foamed well-drilling compositions
C09K 8/536 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
E21B 37/06 - Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting the deposition of paraffins or like substances
72.
CHARGE SHIELDING NANOBUBBLES FOR CORROSION INHIBITION
A variety of oil and gas components can be made of a material that is corrodible. The components can be part of an oil or gas operation such as oil and gas production operations or refinery operations. A fluid can be used to reduce or prevent corrosion on corrodible surfaces of the components. The fluid can include a base fluid and a plurality of nanobubbles. The fluid can also include a corrosion inhibitor. The nanobubbles can make the corrosion inhibitor compatible in the fluid. The nanobubbles can also reduce or prevent corrosion on the surface without the use of a corrosion inhibitor.
Systems and methods for interpreting one or more borehole features are provided herein. The method can include deploying an azimuthal borehole measurement tool into a borehole, obtaining at least one azimuthal borehole image, generating a synthetic image by sparse convolution of a weight function and a plurality of feature kernels, determining an optimal weight function that minimizes a difference between the synthetic image and the at least one azimuthal borehole image, and determining one or more geological characteristics of the borehole based on the optimal weight function and the feature functional representation.
G01V 1/40 - SeismologySeismic or acoustic prospecting or detecting specially adapted for well-logging
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
G01V 3/30 - Electric or magnetic prospecting or detectingMeasuring magnetic field characteristics of the earth, e.g. declination or deviation specially adapted for well-logging operating with electromagnetic waves
In some embodiments, a system for producing fluid from a well can include an electrical submersible pump (ESP) disposed in a wellbore of the well and configured to pump the fluid. The system may further include a distributed acoustic sensing (DAS) system, for example having an interrogator unit and a fiber optic cable extending downhole in the wellbore. An end of the fiber optic cable can be disposed downhole relative to the ESP. In embodiments, the system may further include a controller configured to receive data from the DAS system, process the data to detect a slug, determine a parameter of the detected slug, and alter operation of the ESP in response to determining that the parameter exceeds a threshold.
An array of hydrophones may be deployed in a wellbore to collect sounds that may be used to identify whether a wellbore is safe to operate. This hydrophone array may include acoustic sensors that sense noises indicative of a defect that could lead to catastrophic failure of a wellbore and other noises that may be considered unwanted background noises. Techniques of the present disclosure may classify noises indicative of a defect as being "signals of interest." The presence of "background noise" may interfere with the collection and/or evaluation of "signals of interest." Because of this, evaluations performed on data that includes "background noise" and "signals of interest" may result in inaccurate determinations being made regarding the safety of a wellbore. As such, systems and methods of the present disclosure are directed to improving safety of a wellbore by removing "background noise" more effectively while increasing quality of "signals of interest."
A system and method for installing an energy storage system, the energy storage system including an electrical load and a cement capacitor electrically connected to the electrical load. The cement capacitor includes a first cement electrode; a second cement electrode; and a separator between the first cement electrode and the second cement electrode, wherein the separator electrically insulates the first cement electrode from the second cement electrode. The cement capacitor is charged by passing electricity to the cement capacitor via the electrical load. The cement capacitor is discharged by passing electricity from the cement capacitor to the electrical load.
E21B 47/125 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using earth as an electrical conductor
77.
SYSTEM AND METHOD FOR FORMING CAPACITORS IN WELLBORES
A system and method for installing an energy storage system, the energy storage system including an electrical load and a cement capacitor electrically connected to the electrical load. The cement capacitor includes a first cement electrode; a second cement electrode; and a separator between the first cement electrode and the second cement electrode, wherein the separator electrically insulates the first cement electrode from the second cement electrode. The cement capacitor is charged by passing electricity to the cement capacitor via the electrical load. The cement capacitor is discharged by passing electricity from the cement capacitor to the electrical load.
An apparatus for sealing an annular space proximate to an end of a sand screen on a downhole tubular may include a flexible seal configured to encircle the tubular. The flexible seal may include a first state in which an outer diameter of the flexible seal is less than a diameter of a wellbore, and a second state in which the outer diameter of the flexible seal is the same as the diameter of the wellbore. The apparatus may further include a deployment mechanism configured to cause the flexible seal to transition from the first state to the second state.
An array of hydrophones may be deployed in a wellbore to collect sounds that may be used to identify whether a wellbore is safe to operate. This hydrophone array may include acoustic sensors that sense noises indicative of a defect that could lead to catastrophic failure of a wellbore and other noises that may be considered unwanted background noises. Techniques of the present disclosure may classify noises indicative of a defect as being “signals of interest.” The presence of “background noise” may interfere with the collection and/or evaluation of “signals of interest.” Because of this, evaluations performed on data that includes “background noise” and “signals of interest” may result in inaccurate determinations being made regarding the safety of a wellbore. As such, systems and methods of the present disclosure are directed to improving safety of a wellbore by removing “background noise” more effectively while increasing quality of “signals of interest.”
G01V 1/36 - Effecting static or dynamic corrections on records, e.g. correcting spreadCorrelating seismic signalsEliminating effects of unwanted energy
G01V 1/18 - Receiving elements, e.g. seismometer, geophone
A hydrophone may be deployed in a wellbore to collect sounds that may be used to identify whether a wellbore is safe to operate. This hydrophone may include acoustic sensors that sense noise generated by motion of the hydrophone and may sense noise indicative of a defect that could lead to catastrophic failure of a wellbore. Noise generated by movement of the hydrophone may be classified as “road noise” and noise associated with wellbore defects may be classified being “signals of interest.” The presence of “road noise” may interfere with the collection of “signals of interest” and because of this, evaluations performed on data that includes “road noise” may result in inaccurate determinations and a decrease in safety. As such, systems and methods of the present disclosure are directed to improving safety of a wellbore by removing “road noise” more effectively while increasing quality of “signals of interest.”
A method may include: introducing a resin modified cement slurry into a wellbore penetrating a subterranean formation, the subterranean formation comprising a caprock and a carbon dioxide injection zone, the resin modified cement slurry comprising: a resin; a hardener; a hydraulic cement; and water; and setting the resin modified cement slurry to form a set cement wherein the set cement forms a carbonation-resistant barrier in the carbon dioxide injection zone in the subterranean formation.
An example control system includes a hydraulic pump disposed in a wellbore, a valve bank disposed in the wellbore, and an unpressurized hydraulic fluid reservoir. The hydraulic pump is fluidically connected with the valve bank. The valve bank is fluidically connected with the unpressurized hydraulic fluid reservoir. The unpressurized hydraulic fluid reservoir is fluidically connected with the hydraulic pump. The control system is configured to flow pressurized hydraulic fluid exiting from the hydraulic pump to the valve bank to be distributed from the valve bank to the wellbore equipment.
Provided is a frac window system, a well system, and a wellbore stimulation method. The frac window system, in one aspect, includes an elongated tubular having a first end and a second end with an opening defined in a wall of the elongated tubular between the first end and the second end, the wall having an inner surface and an outer surface, wherein the opening in the wall is configured to align with a window of a wellbore casing. The frac window system, according to this aspect, may further include a polished bore receptacle coupled to the first end of the elongated tubular, the polished bore receptacle having an inside diameter (ID1) sufficient to engage with a high-pressure frac string.
In oil and gas wells, scale can build up on tubing strings, downhole tools, wellbore walls, or within the near-wellbore region. A variety of treatment fluids used in oil and gas operations can include a scale dissolver. The scale dissolver can be incompatible with the other additives, for example when the scale control additive has a different charge than the other additives whereby the scale dissolver needs to be in a much higher concentration in order to dissolve the scale. The addition of nanobubbles in the treatment fluid can stabilize the fluid and make the scale dissolver more efficient, even at lower concentrations, in dissolving the scale and minimize the amount of hydrogen sulfide gas that is produced during dissolution.
C09K 8/536 - Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
C09K 8/38 - Gaseous or foamed well-drilling compositions
C09K 8/03 - Specific additives for general use in well-drilling compositions
E21B 37/06 - Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting the deposition of paraffins or like substances
85.
PRODUCING FLUID FROM A WELL USING DISTRIBUTED ACOUSTIC SENSING AND AN ELECTRICAL SUBMERSIBLE PUMP
In some embodiments, a system for producing fluid from a well can include an electrical submersible pump (ESP) disposed in a wellbore of the well and configured to pump the fluid. The system may further include a distributed acoustic sensing (DAS) system, for example having an interrogator unit and a fiber optic cable extending downhole in the wellbore. An end of the fiber optic cable can be disposed downhole relative to the ESP. In embodiments, the system may further include a controller configured to receive data from the DAS system, process the data to detect a slug, determine a parameter of the detected slug, and alter operation of the ESP in response to determining that the parameter exceeds a threshold.
G01V 1/40 - SeismologySeismic or acoustic prospecting or detecting specially adapted for well-logging
E21B 47/125 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using earth as an electrical conductor
E21B 43/12 - Methods or apparatus for controlling the flow of the obtained fluid to or in wells
A packer assembly can be used to create a seal against an inside of a tubing string. The packer assembly can be used in high-temperature, high-pressure wellbores. The packer assembly can include a first and second sealing element with a spacer located between. The spacer can be made from a deformable material such that during mechanical or hydraulic actuation of the sealing elements, the spacer expands to make contact with the inside of the tubing string and keeps at least a portion of the inside edges of the sealing elements separated. The deformable spacer can reduce the amount of elongation strain the sealing elements commonly encounter at the vicinity of current metal spacer designs during setting below a value that would cause a loss of structural integrity to the sealing elements.
A hydrophone may be deployed in a wellbore to collect sounds that may be used to identify whether a wellbore is safe to operate. This hydrophone may include acoustic sensors that sense noise generated by motion of the hydrophone and may sense noise indicative of a defect that could lead to catastrophic failure of a wellbore. Noise generated by movement of the hydrophone may be classified as "road noise" and noise associated with wellbore defects may be classified being "signals of interest." The presence of "road noise" may interfere with the collection of "signals of interest" and because of this, evaluations performed on data that includes "road noise" may result in inaccurate determinations and a decrease in safety. As such, systems and methods of the present disclosure are directed to improving safety of a wellbore by removing "road noise" more effectively while increasing quality of "signals of interest."
A method that may comprise disposing a bottom hole assembly into a formation, wherein the bottom hole assembly comprises a mud motor, identifying a first segmented data set for a slide mode of the mud motor, and identifying a second segmented data set for a rotate mode of the mud motor. The method may further comprise calibrating the mud motor at least in part using a Reversible Jump Markov Chain Monte Carlo (RJMCMC), wherein the RJMCMC uses at least in part the first segmented data set and the second segmented data set.
E21B 49/00 - Testing the nature of borehole wallsFormation testingMethods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
A method comprises obtaining, via one or more pressure measurement devices, measurements of a pressure of a fluid when a force is applied to one or more elements of a downhole tool positioned in a wellbore formed in a subsurface formation. The method comprises determining the force applied to the one or more elements based on the pressure of the fluid.
Provided is a method for setting a downhole tool, and a downhole tool, and a well system employing the same. The method, in at least one aspect, includes positioning a downhole tool within a wellbore, the downhole tool including expandable metal configured to expand in response to hydrolysis, and subjecting the expandable metal to a wellbore fluid to expand the expandable metal into contact with one or more surfaces. The method, in at least one aspect, further includes applying a voltage to the expandable metal while the expandable metal is being subjected to the wellbore fluid.
Provided is a method for setting a downhole tool, and a downhole localized heater. The method, in at least one aspect, includes positioning a downhole tool within a wellbore, the downhole tool including expandable metal configured to expand in response to hydrolysis, and positioning a downhole localized heater within the wellbore, the downhole localized heater being proximate the expandable metal. The method additionally includes subjecting the expandable metal to a wellbore fluid to expand the expandable metal into contact with one or more surfaces while activating the downhole localized heater to create a temperature spike and accelerate an expansion of the expandable metal.
This disclosure presents an apparatus to improve the position sensing of a moving mechanism, such as a fluid valve located within a borehole. The apparatus can utilize a light beam or an optical fiber to measure changes in the position sensor. The smaller and lighter apparatus can improve the accuracy of the sensing mechanism. In addition, three systems are presented. The first system utilizes a vibration sensor, such as a MEMS, and an accelerometer to calculate changes in the mechanism position of the moving mechanism. The second system utilizes a radiation source and detector combination, along with a moving radiation shield to provide more accurate position sensing than conventional techniques. In addition, a lens-based system is presented, that when combined with a radiation source, can calculate position information by detecting the diffusion or dispersal of the radiation against a radiation detector.
E21B 47/09 - Locating or determining the position of objects in boreholes or wellsIdentifying the free or blocked portions of pipes
F16K 37/00 - Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
93.
Subsurface safety valve including two or more oppositely poled electromagnets and two or more oppositely poled permanent magnets
Provided is an SSSV, a well system, and a method. The SSSV, in one aspect, includes two or more electromagnets fixedly coupled to a housing, a first of the two or more electromagnets having its north pole facing a first electromagnet direction and a second of the two or more electromagnets having is south pole facing first electromagnet direction. The SSSV, in accordance with this aspect, further includes two or more permanent magnets coupled to the flow tube, a first of the two or more permanent magnets having its south pole facing a first permanent magnet direction and a second of the two or more permanent magnets having its north pole facing the first permanent magnet direction, the two or more permanent magnets configured to axially move with a flow tube.
Provided is an SSSV, a well system, and a method. The SSSV, in one aspect, includes an electromagnet fixedly coupled to a housing, a target positioned proximate the electromagnet, and a radially compressible member located radially between a flow tube and the housing. In one aspect, the radially compressible member is engageable with the target and is configured to move between: 1) a radially extended state when the electromagnet is not energized and the target is in an axially distal position to allow the flow tube to move between a closed state and an open state, and 2) a radially compressed state when the electromagnet is energized and the target is in an axially proximal position to hold the flow tube in a flow state.
Systems, methods, and apparatus, including computer programs encoded on computer-readable media, for validating well system measurements. Sample datasets for a plurality of measurement channels of a first channel set are obtained from one or more well devices of a well system. A comparison operation is performed of a first sample dataset associated with a first sample unit of measure of a first measurement channel of a first channel set with historical datasets of one or more historical units of measure of one or more matched historical measurement channels. A frequency of occurrence operation is performed for the first sample unit of measure and the one or more historical units of measure across the plurality of measurement channels of the first channel set. A validation process is performed based on the comparison operation or the frequency of occurrence operation, or both the comparison operation and the frequency of occurrence operation.
A method for detecting the presence of an insulation gas in a housing. The method may include setting a high voltage power supply to a first voltage, wherein the first voltage flows through a ladder disposed in a pulsed neutron logging tool. The method may further include taking one or more measurements of a current flowing through the ladder and comparing the one or more measurements of the current to a threshold.
G01V 5/10 - Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using neutron sources
E21B 47/117 - Detecting leaks, e.g. from tubing, by pressure testing
G01M 3/16 - Investigating fluid tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using electric detection means
G01M 3/32 - Investigating fluid tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
G01M 3/40 - Investigating fluid tightness of structures by using electric means, e.g. by observing electric discharges
G01R 19/165 - Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
G01R 19/00 - Arrangements for measuring currents or voltages or for indicating presence or sign thereof
97.
A SUBSURFACE SAFETY VALVE INCLUDING AN ELECTROPERMANENT MAGNET AND TARGET
Provided is a magnet for use with an SSSV, an SSSV, a well system, and a method. The magnet, in one aspect, includes an electropermanent magnet. The magnet, in accordance with this aspect, further includes a self-powered protection circuit coupled to the electropermanent magnet, the self-powered protection circuit configured to switch the electropermanent magnet to the OFF state when the SSSV loses power.
Provided is an SSSV, a well system, and a method. The SSSV, in one aspect, includes an electromagnet fixedly coupled to a housing, a target positioned proximate the electromagnet, and a radially compressible member located radially between a flow tube and the housing. In one aspect, the radially compressible member is engageable with the target and is configured to move between: 1) a radially extended state when the electromagnet is not energized and the target is in an axially distal position to allow the flow tube to move between a closed state and an open state, and 2) a radially compressed state when the electromagnet is energized and the target is in an axially proximal position to hold the flow tube in a flow state.
Disclosed herein are methods and systems of evaluating cement integrity behind a coated casing string using acoustic signals. The methods include disposing an acoustic logging tool inside a coated casing string, wherein the coated casing string is disposed in a wellbore to form an annulus between the coated casing string and the wellbore, and is at least in part bonded to the wellbore by a cement. Further, the methods include transmitting an acoustic signal into at least part of the coated casing string to form a Lamb wave mode, measuring an attribute of a Lamb wave mode, and determining if the coated casing string is fully or partially bonded to the cement or is free pipe or is partially bonded to a formation based at least in part on the Lamb wave mode.
G01V 1/40 - SeismologySeismic or acoustic prospecting or detecting specially adapted for well-logging
E21B 33/14 - Methods or devices for cementing, for plugging holes, crevices or the like for cementing casings into boreholes
E21B 47/12 - Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
100.
VORTEX FILTRATION FOR DEBRIS-SENSITIVE COMPONENTS IN A WELL
An exemplary apparatus for supplying clean fluid to a component in a well may include a filter. The filter may include a housing having an outlet, a conical permeable element disposed at least partially inside the housing, and a tapered helical coil disposed at least partially inside the permeable element. A first opening may be formed at a first axial end of the permeable element, and a second opening may be formed at a second axial end of the permeable element. The apparatus may further include first conduit fluidly coupling the outlet and the component, and a second conduit fluidly coupling the second opening and a tubular of the well.